デジタル変革戦略における AI の位置づけを決める際に尋ねるべき 5 つの質問

デジタル変革戦略における AI の位置づけを決める際に尋ねるべき 5 つの質問

COVID-19 パンデミックにより、顧客および従業員エクスペリエンスのデジタル化に対する企業の投資が加速しており、これは私がデジタル変革に携わってきた 25 年間のキャリアの中で見たことのないほどの出来事です。当社の最新の調査によると、大企業は2023年だけで少なくとも100万ドルの費用がかかる取り組みを平均20件実施し、意思決定者は今後数年間でさらに多くの同様のプロジェクトに取り組むと予想しています。

もちろん、あらゆる業界のリーダーが最も懸念しているのは、AI が持つ可能性です。ゴールドマン・サックスの研究者によると、AIへの投資は2025年までに米国だけで1000億ドルに達すると予想されているが、多くのリーダーはAIの可能性を十分に理解せずにAIに利用されている。 AI は、組織の変化を促す最初の大規模な技術的破壊的変化ではありません。今後も同様の変化が起こるでしょう。リーダーがすべきことは、AI が自社の従業員、業務、そしてより広範なデジタル変革戦略のどこに当てはまるかを自問することです。

ここでは、AI 戦略をどのように実装すべきかを判断するのに役立つ 5 つの質問を紹介します。

1. なぜ AI を使うべきなのか?

多くのリーダーは、ビジネスを成長させるために AI を活用するという考えに夢中になっていますが、組織に AI が必要な理由について考えることができません。新しいデジタルやテクノロジーの取り組みに関するあらゆる議論と同様に、リーダーは「なぜ」から始めなければなりません。プロセスを自動化したいですか? 製品開発をスピードアップしたいですか? より優れた洞察を生み出そうとしていますか? リーダーが AI イニシアチブの背後にある理由を明確に説明できない場合、その背後にある合理的な動機と実際の動機の間に不一致が生じる可能性があります。

2. AIにどう対処するのか?

理由を理解したら、ビジネスで何を改善または開発しようとしているのかを検討する必要があります。繰り返し可能なアクションを自動化することで、時間のかかるプロセスを削減したいとお考えですか? 開発者はコード ベース内のバグをより適切に特定しようとしていますか? データセット内のパターンを特定する必要がありますか? 企業は製品またはプロセスの開発ライフサイクルを加速したいと考えていますか? すべての AI イニシアチブは、本質的にプロセスの一部です。 AI はスタンドアロンの機能を構成するものではなく、専用の費用として見なされるべきではありません。

3. AIをどのように実装しますか?

理由と内容を理解したら、ビジネスが AI からの洞察をどのように活用して目標をより効果的に達成できるかを検討できます。従業員はどのように対処し、どのようなメリットを得るのでしょうか? 今日の企業には複数の技術パートナーがおり、AI を実行できると主張するパートナーも数多くいるでしょう。しかし、企業はどのようにしてこれらすべてのパートナーと連携して AI ソリューションを統合するのでしょうか? 多くの企業が AI の使用方法を定義する AI ポリシーを策定しています。これらのガードレールを導入することで、企業が AI を使用する際に倫理的、道徳的、合法的であることを確保できます。

4. 適切なデータがありますか?

これはリーダーたちが自らに問うことのできない最も重要な質問です。大規模なデータ管理の取り組みにもかかわらず、多くの組織がデータの断片化に悩まされているのが現状です。 AI の性能は、保有するデータによって決まります。不正確なデータは AI に誤った判断をさせる原因となり、オープン AI とクローズド AI の両方において市場における最大の懸念事項となっています。不完全なデータ、または過去に不適切な意思決定に基づいて発生した行動パターンを含むデータがあると、AI がそれらの行動を学習し、不正確な洞察を提供することになります。

5. 当社のビジネスは運用 AI の導入に対応できる準備ができていますか?

あらゆるデジタル実装の文脈において、人材、プロセス、テクノロジーは同等に重要な柱ですが、企業は人材とプロセスの側面を見落としがちです。テクノロジーの効率性と機能性を過度に重視する企業は、エンドユーザーやコアな運用機能への影響を考慮しない可能性があります。大規模に AI を実装することを決定する前に、企業レベルまたは部門レベルで AI を導入する準備が本当に整っているかどうかを検討することが重要です。パイロット プロジェクトは、実装によって期待どおりの結果が得られているかどうかを判断し、エンド ユーザーがプロセスとどのように対話するかをより深く理解するのに役立ちます。企業全体でカスタマイズとパーソナライゼーションを有効にできない場合、AI イニシアチブの実装ははるかに難しくなります。

AI の世界は広大であり、私たちは AI が企業レベルで持つ可能性について、まだ十分に理解している段階です。しかし、企業が所有するデータからより優れた洞察を生み出すために AI を意図的に使用することは、ビジネスに大きな影響を与える可能性があることは明らかです。旅は、まず一歩下がって、最初に正しい質問をすることから始まります。

<<:  Vision Pro が 50 億ドルで売却され、ザッカーバーグは大喜び! Metaは500億ドルを燃やし、VR復活の希望がここにある

>>:  人工知能はスマートシティの夢の実現にどのように役立つか

ブログ    

推薦する

新しいシステムではドローンを使って手の届きにくい太陽光パネルを清掃する

太陽光パネルには常に埃や汚れなどのゴミがたまります。また、高層ビルの屋上や遠隔地に設置されていること...

...

シリコンバレーのAI界で注目の記事:ジャスパーとVCはAIGCブームの最大の敗者となり、潮が引いた後に初めて誰が裸で泳いでいるかがわかる

この夏、人工知能起業家サム・ホーガンが書いた記事がシリコンバレー中で話題になった。現在、AI と大規...

...

AppleがAI研究成果を公開、マルチモーダルLLMモデルFerretをリリース

IT Homeは12月25日、Appleがコロンビア大学の研究者らと協力して2023年10月にオープ...

【アルゴリズム】アルゴリズムを理解する(I)—アルゴリズムの時間計算量と空間計算量

[[407579]]序文大企業の秋季採用の先行スタートが始まっており、新卒採用の秋季大幅強化の警鐘が...

30年の沈黙と60年の経験を経て、「人工知能」の過去と現在とは?

30年以上沈黙していた「人工知能」という言葉は、ここ2年で非常に人気が高まり、テクノロジー企業の主...

...

Microsoft の Zhu Chenguang: 事前トレーニング済みモデルの次のステップは何ですか? PLMの「不可能の三角形」を突破する

近年、大規模な事前トレーニング済み言語モデル (PLM) により、さまざまな NLP タスクのパフォ...

3分レビュー! 2021年11月のロボット資金調達の概要

自動化の需要が継続的に高まっているため、ロボット産業の発展は加速段階に入り、わが国のロボット市場は最...

...

Swin TransformerとDCNの融合、変形可能なアテンションTransformerモデルはほとんどのViTを上回る

Transformer は最近、さまざまな視覚タスクで優れたパフォーマンスを発揮しており、受容野によ...

Horizo​​nの最新作! Sparse4D v3: エンドツーエンドの 3D 検出および追跡タスクのさらなる改善 (SOTA が 2 倍!)

この記事は、Heart of Autonomous Driving の公開アカウントから許可を得て転...

最新レビュー!拡散モデルと画像編集の愛憎関係

この記事は、Heart of Autonomous Driving の公開アカウントから許可を得て転...

掃除ロボットはほこりを吸い取るだけでなく、プライバシーも「吸い取る」ことができます

家庭でますます一般的になりつつある掃除ロボットは、ほこりを吸い取るだけでなく、個人のプライバシーも「...