ビッグデータと人工知能のために生まれた新しい職業:アルゴリズム専門家

ビッグデータと人工知能のために生まれた新しい職業:アルゴリズム専門家

[[69076]]

映画「マトリックス」でレオが銃弾の雨をかわす難しい動きを誰もが覚えているはずだ。この映画はビッグデータと人工知能に満ちている。アルゴリズムの専門家は、データベースをマーク、検出、整理し、さらには敵を攻撃します。当時はSFの世界のように思われていたものが、今では広く使われている技術です。

ビッグデータとは、さまざまな種類のデータから貴重な情報を迅速に取得する能力を指します。これを理解することは非常に重要であり、それがこのテクノロジーが多くの企業にとって非常に魅力的な理由です。

アマゾンの価格比較推奨、Netflix の「ハウス・オブ・カード」人気に対する計画の成功、マイクロソフト リサーチ ニューヨークの経済学者デビッド・ロスチャイルドによるオバマ大統領からアカデミー賞、NBA に至るまでのデータを正確に予測したことなどから、これが単なる見せかけの技術ではないことが十分に証明されている。

ビッグデータには 4 つの明らかな利点があります。まず、データ量が膨大であることです。 TB レベルから PB レベルに飛躍しました。第二に、データの種類が多くなりました。上記のウェブログ、ビデオ、写真、地理的位置情報など。 3つ目は、価値密度が低いことです。ビデオを例にとると、継続的な監視中に有用なデータが 1 秒か 2 秒しかない場合があります。 4つ目は、処理速度が速いことです。

人工知能は非常に複雑な分野であり、他の知識の側面も含む学際的なコンピュータ分野です。その主な内容は、コンピュータが人間の自然言語処理を学習することです。私たちはターミネーターのようなSFシーンを想像する必要はありません。それは科学者が研究すべきものです。現実の世界では、音声認識機能を備え、自然言語処理の一部である Apple の Siri など、ビッグデータと人工知能を組み合わせた製品がますます増えています。実際の応用においては、スマートフォン上でのサービス展開など、ユーザーの日常的なニーズを解決できる多くの役割を果たします。

では、ここはビッグデータと人工知能が出会うのにふさわしい場所なのでしょうか? 簡単な原則を見てみましょう。

『ビッグデータ:私たちの生活、仕事、思考を変える革命』という本の中で、著者のビクター・メイヤーは、現在のコンピュータシステムは、プログラムの作成時に明示的に従うよう要求されているルールに基づいて計算を実行すると述べています。したがって、結果が時々、そして必然的に間違っている場合は、戻って再コーディングすることができます。コンピュータ コードがどんなに複雑であっても、あらゆる操作の基礎を理解して実行することは可能です。

しかし、ビッグデータを追跡することは非常に困難になっています。まず、アルゴリズムによる予測の基礎は、一般の人には理解できないほど複雑すぎる可能性があります。 Google 翻訳は、数十億ページ分の翻訳データを使用して単語の翻訳方法を決定します。 膨大な量のデータに基づくこの大規模な統計計算により、アルゴリズムの特定の要素を追跡することはほぼ不可能になります。同時に、ビッグデータの規模により、その運用規模は私たちの想像を超えています。 Google は 4 億 5000 万の数学的モデルをテストした結果、いくつかの検索キーワードとインフルエンザとの関連性を特定しました。

顧客にこの技術を使うよう説得したい場合、調整を手伝ってくれるアルゴリズム専門家が必要です。この職業に就く人にはどのような要件がありますか?

まず、これらの専門家はコンピューターサイエンス、数学、統計学の専門家です。彼らは日々の仕事の中で、ビッグデータの分析と予測を検討しています。データ ソースを評価し、予測を分析し、基礎となるアルゴリズム モデルを作成します。アルゴリズムの原理をテストする必要がある場合は、アルゴリズムの結果、統計的手法、データベースを呼び出します。簡単に言えば、アルゴリズム担当者はデータの選別を担当します。

コンピュータの発達により、蓄積された膨大なデータベースを、目的に応じて利用できるように整理・編集する人が必要になりました。ここで、アルゴリズム専門家は外部アルゴリズム専門家と内部アルゴリズム専門家に分けられます。外部のアルゴリズム専門家は、裁判所命令や規制が発令されたときなど、政府が必要とするときに、ビッグデータ予測の正確性や合理性をチェックする中立的な監査人として行動することができます。アルゴリズム専門家は、ビッグデータ企業にサービスを提供したり、専門的な監査サービスを提供したりすることができます。

社内のアルゴリズム専門家が組織内のビッグデータ活動を監視します。彼らは、企業の利益だけでなく、企業のビッグデータ分析の影響を受ける人々の利益にも焦点を当てています。彼らはビッグデータ運用を監督しており、社内のアルゴリズム専門家は、政府機関のビッグデータ予測によって損害を受けたと感じた人が最初に連絡を取る相手である。データが公開される前に、分析の完全性と正確性を確認します。最初の 2 つのタスクを達成するには、アルゴリズム担当者は勤務先の企業内である程度の自由と中立性を享受する必要があります。つまり、社内アルゴリズム専門家は、企業が社会の信頼を維持するために必要な職業なのです。

アルゴリズム専門家の需要の最も直接的な理由は、ビッグデータの分野では企業を制約する新しい規範や標準がまだ確立されていないことです。アルゴリズムエンジニアは、個人情報のセキュリティに関する社会の懸念を解決するためのシステムを設計します。ブラックボックスを開くこの職業に興味がある人はいますか?

<<:  ビッグデータと人工知能のために生まれた新しい職業:アルゴリズム専門家

>>:  iOS の位置決めと座標系アルゴリズム

ブログ    
ブログ    

推薦する

人工知能の研究ホットスポット:自然言語処理

人工知能(AI)は、新たな科学技術革命と産業変革の重要な原動力として、世界に大きな影響を与え、変化を...

ビッグデータアルゴリズムのジレンマ

2013年、米国で窃盗罪で有罪判決を受けた男性がウィスコンシン州の裁判所に訴訟を起こしたという物議を...

リスク管理シナリオの全プロセスモデルの構築と適用

オンライン マイクロクレジットの一般的なリスク管理シナリオは、融資前、融資中、融資後の段階に分けられ...

AI ナンバープレート認識 ANPR テクノロジーは人類にどのようなメリットをもたらしますか?

調査によると、世界のANPRシステム市場は2021年から2023年の間に年間9.6%成長すると予想さ...

マスク着用で顔認証での支払いは難しいですが、手渡しでの支払いは可能ですか?

人工知能技術が私たちの生活にますます統合されるにつれて、一般の人々のプライバシーに対する懸念も高まっ...

2020年に注目すべき8つのAIトレンド

自動化、ハードウェア、モデル開発などの新たな開発が、2020 年の AI を形作るでしょう。 O&#...

並列コンピューティングの量子化モデルとディープラーニングエンジンへの応用

この世で唯一負けない武術はスピードだ。ディープラーニング モデルをより速くトレーニングする方法は、常...

COVID-19 最新情報: COVID-19 との戦いに役立つトップ 10 のイノベーション

[[320870]]迅速な感染検査から3Dプリントソリューションまで、世界中のテクノロジー企業が協力...

インターネット技術起業家は、2 つのセッションで提案を行う際にどのような点に重点を置いていますか?

[[258735]] 3月3日、毎年恒例の全国「両会」が正式に始まりました。「両会」シーズンが始ま...

実践 | 人工知能が小売体験を向上させる 20 の例

小売体験は長年にわたってあまり変わっていません。つまり、店に入って、適切な製品を見つけて、それを購入...

アンドリュー・ン氏の新演説:AIは業界の状況を変えており、企業の障壁はアルゴリズムではなくデータである

[[204846]] 1. 人工知能の応用と価値Andrew Ng 氏は、AI は新しい電気であると...

AIを信頼していない経営者は何を考えているのか?

経営幹部は長い間、より高度な意思決定にデータ分析を使用することに抵抗し、AI 支援による意思決定より...

ブロックチェーンを使用して AI スマートエコノミーを構築するにはどうすればよいでしょうか?

人工知能(AI)は、機械によって発揮される知能であるという点で人間の知能とは異なります。しかし、直接...

「ビッグアイクリップ」が生まれ変わり、ChatGPTチャットボットに変身

6 月 29 日のニュースによると、かつては物議を醸し、今では懐かしく思われている Microsof...