8 月の Github のトップ 10 ディープラーニング プロジェクト、あなたはどれを選びますか?

8 月の Github のトップ 10 ディープラーニング プロジェクト、あなたはどれを選びますか?

ビッグデータダイジェスト制作

編集者: CoolBoy

みなさん、こんにちは! 先月のトップ 10 の機械学習プロジェクトのリストを見つけたので、ここに掲載します。どれを選びますか?

このリストは、過去 1 か月間の 250 件のオープンソース機械学習プロジェクトから選択されています。著者らは、この期間中に得られた新たな重要な結果を比較し、いくつかの要素に基づいて専門的な品質を測定しました。

オープンソース プロジェクトはプログラマーにとって非常に便利なので、皆さんが刺激を受けるプロジェクトを見つけられることを願っています。

10日

GANimation: 単一画像からの構造的な顔アニメーション (Albert Pumarola 他) [Github で 344 個のスター]

https://github.com/albertpumarola/GANimation?utm_source=mybridge&utm_medium=blog&utm_campaign=read_more

これはアクション ユニット (AU) に基づく新しい GAN システムであり、顔の表情を定義するために継続的かつ多様な構造的な顔の変化を示します。この方法により、各アクション ユニットのメトリックを調整し、複数のアクション ユニットを組み合わせることができます。

9位

Sg2im: シーングラフベースの画像生成 (Google オープンソース) [Github で 670 個のスター]

https://github.com/google/sg2im?utm_source=mybridge&utm_medium=blog&utm_campaign=read_more

シーン グラフは視覚的なシーンの構造的表現であり、ノードはオブジェクトを表し、線はオブジェクト間の関係を表します。この研究では、シーングラフを入力として受け取り、画像を出力するエンドツーエンドのニューラル ネットワーク モデルを紹介します。

8日

Stt-benchmark: 音声テキスト変換ベンチマーク (Picovoice) [Github で 294 個のスター]

https://github.com/Picovoice/stt-benchmark?utm_source=mybridge&utm_medium=blog&utm_campaign=read_more

Cheetah は、Picovoice が IoT アプリケーション向けに設計した音声認識エンジンです。他のモデルと比較すると、Cheetah のパフォーマンスは最先端の DeepSpeech にほぼ近いです (0.3 vs 0.32 WER)。ただし、速度は 100 倍になり、メモリ使用量は 398 分の 1 になります。これにより、Cheetah は小型製品 (Raspberry Pi など) に組み込まれたプラットフォーム上で実行できるようになり、より多くのコンピューティング リソースとストレージ リソースを必要とする大規模モデルにも便利になります。

7位

Artificial-adversary: 機械学習モデルをテストするための敵対的テキストを生成するツール (Airbnb Engineering) [Github で 155 個のスター]

https://github.com/airbnb/artificial-adversary?utm_source=mybridge&utm_medium=blog&utm_campaign=read_more

ユーザーが生成したテキストを区別する場合、ユーザーが検出を回避するためにコンテンツを変更する方法は多数あります。これには、見た目が似ている文字との交換も含まれます。たとえば、「please wire me 10,000 US DOLLARS to bank of scamland」は詐欺メッセージである可能性がありますが、「[email protected] me 10000 US DoLars to, BANK of ScamIand」と書かれていた場合、多くの識別子が失敗します。

この拡張ライブラリを使用すると、これらのメソッドを使用してテキストを生成し、独自の機械学習アルゴリズムでテストできます。

6位

Soccerontable: デスクトップでサッカーの試合を観戦 (Konstantinos Rematas) [Github で 247 個のスター]

https://github.com/krematas/soccerontable?utm_source=mybridge&utm_medium=blog&utm_campaign=read_more

5位

DanceNet: オートエンコーダ、LSTM、混合密度ネットワーク (Keras) を使用したダンス ジェネレーター [Github で 282 個のスター]

https://github.com/jsn5/dancenet?utm_source=mybridge&utm_medium=blog&utm_campaign=read_more

4位

UnsupervisedMT: フレーズベースおよびニューラルの教師なし機械翻訳 (Facebook Research) [Github で 490 個のスター]

https://github.com/facebookresearch/UnsupervisedMT?utm_source=mybridge&utm_medium=blog&utm_campaign=read_more

今日の機械翻訳システムは人間の効率に近づいていますが、これは並列文の数が多いことに関係しています。この論文では、単一のコーパスを使用して翻訳を学習する方法を研究します。著者らはニューラルモデルとフレーズベースモデルを提案した。どちらのモデルも、初期化パラメータ、モデルのノイズ除去、並列データの反復生成を考慮しています。これらは以前のモデルよりも大幅に優れており、構造がより単純でハイパーパラメータが少なくなっています。

3位

Vid2vid: ビデオからビデオへの合成 (NVIDIA AI) [Github で 1797 個のスター]

https://github.com/NVIDIA/vid2vid?utm_source=mybridge&utm_medium=blog&utm_campaign=read_more

この論文では、敵対的生成構造を使用した新しいビデオ間合成方法を提案します。 Github には、Pytorch での高解像度の実装が含まれています。このモデルは、意味的にラベル付けされた画像を実際のビデオに変換したり、ストロークから実際の音声アクションを生成したり、ポーズから人間のアクションを生成したりできます。

2位

Glow: 可逆 1x1 畳み込み生成フロー (OpenAI) [Github で 1664 個のスター]

https://github.com/openai/glow?utm_source=mybridge&utm_medium=blog&utm_campaign=read_more

Glow は、1x1 可逆畳み込みを実行するために使用される可逆生成モデルです。これは以前の研究 (https://arxiv.org/abs/1605.08803) を継続し、その構造を簡素化したものです。このモデルは高解像度の画像を生成し、データを操作できる特徴を発見することができます。

***名前

Autokeras: 自動機械学習 (AutoML) 用のオープンソース ソフトウェア ライブラリ (Haifeng Jin) [Github で 2637 個のスター]

https://github.com/jhfjhfj1/autokeras?utm_source=mybridge&utm_medium=blog&utm_campaign=read_more

Auto-Keras は、AutoML 用のオープンソース ソフトウェア ライブラリです。これはテキサス A&M 大学の DATA Lab によって開発されました。 AutoML の最終的な目標は、データ サイエンスのバックグラウンドを持たないさまざまな分野の専門家に、シンプルなディープラーニング ツールを提供することです。 Auto-Keras は、構造とハイパーパラメータを自動的に検出するディープラーニング モデルを構築するための関数を提供します。

関連レポート:

https://medium.mybridge.co/machine-learning-open-source-of-the-month-v-aug-2018-ae85e7302ea5

[この記事は51CTOコラムBig Data Digest、WeChatパブリックアカウント「Big Data Digest(id: BigDataDigest)」のオリジナル翻訳です]

この著者の他の記事を読むにはここをクリックしてください

<<:  視覚畳み込みニューラルネットワークモデルを習得し、画像認識技術の分野を探索します。

>>:  もう読み間違えないでください!人工知能と人間の知能の違いを理解する

ブログ    

推薦する

...

移動ロボットとは何ですか?また、どのように分類されますか?

移動ロボットは、作業を自動的に行う機械装置です。センサー、遠隔操作者、自動制御移動搬送機などから構成...

コードを書けるAIが登場

テクノロジー・トラベラーは2月10日、北京から次のように報じた。「人工知能技術はコーディング開発の結...

...

GenAI が近づくにつれて、データ ガバナンスはどのように進化するべきでしょうか?

著者 | アイザック・サコリック編集者 | ヤン・ジェン制作:51CTO テクノロジースタック(We...

予想外! AI技術はアダルト動画サイトに成熟して適用されている

アダルト動画サイトがAI技術を導入!ウェブサイトでは、顔認識やアルゴリズムを使用したビデオプレビュー...

...

RNN と LSTM は弱いです!注目モデルは王様!

リカレント ニューラル ネットワーク (RNN)、長期短期記憶 (LSTM)、これらの人気のニューラ...

RedditユーザーがAppleのCSAMツールをリバースエンジニアリングし、アルゴリズムがすでに存在していることを発見

[[418306]]今月初め、アップルはエコシステム全体に新たな子どもの安全機能を導入すると発表し...

...

パーシー・リャンらによる新しい研究:新しいBingのような生成型検索エンジンはそれほど役に立たないかもしれない

生成型検索エンジンは、入力クエリとオンライン引用に対する応答を直接生成することで、ユーザーの情報ニー...

キャピタルグループ: ジェネレーティブAIの未来に向けてどう動員するか

キャピタル グループは、1931 年、大恐慌の真っ只中にカリフォルニア州ロサンゼルスで設立され、現在...

ついに、データ、情報、アルゴリズム、統計、確率、データマイニングをわかりやすく説明した人がいました。

[[328804]] 【ガイド】AI時代では、データ、情報、アルゴリズム、統計、確率、データマイニ...

アルゴリズム設計者が新たな人気者になる

Aisle50 の共同創設者であるクリストファー・シュタイナー氏は、新著の中で、デジタルが優位性を...

...