Google は機械学習を利用して画像内のオブジェクトにラベルを付け、インターフェース全体の速度を 3 倍に向上させました。

Google は機械学習を利用して画像内のオブジェクトにラベルを付け、インターフェース全体の速度を 3 倍に向上させました。

台湾メディアiThome.com.twによると、Googleは2018年のACMマルチメディアカンファレンスで機械学習を使った画像注釈インターフェースを発表し、ユーザーは画像内のオブジェクトの輪郭とラベルを素早くマークできるようになり、全体的なタグ付け速度が3倍に向上したという。最新のディープラーニングベースのコンピューター ビジョン モデルのパフォーマンスはラベル付けされたトレーニング データの量に依存するため、データベースが大きいほど機械学習のパフォーマンスが向上します。

Google は多くのディープラーニング研究で、高品質のトレーニング データを取得するのは容易ではないと繰り返し述べており、この問題はコンピューター ビジョンの開発、特に自動運転、ロボット工学、画像検索などのピクセルベースの認識タスクにおける主なボトルネックとなっています。

従来の方法では、ユーザーは手動でラベル付けツールを使用して、画像内のオブジェクトの境界を囲む必要があります。Google は、COCO plus Stuff データセットを使用すると、画像にラベルを付けるには 19 分、データセット全体にラベルを付けるには 53,000 時間かかり、時間がかかりすぎて非効率的であると述べています。そこで Google は、機械学習を使用してユーザーが画像内のオブジェクトの輪郭のラベルをすばやく見つけられるようにする新しいトレーニング データ ラベリング方法である Fluid Annotation を検討しました。

Fluid アノテーションは、強力なセマンティック セグメンテーション モデルの出力から始まります。ユーザーは、機械学習によって支援された自然なユーザー インターフェイスを使用して、それを編集および変更できます。このインターフェイスは、修正する必要があるオブジェクトと順序をユーザーに提供し、マシンがまだ明確に識別できない部分にユーザーが集中できるようにします。画像に注釈を付けるために、Google は分類ラベルと信頼スコアが付いた約 1,000 枚の画像を使用してセマンティック セグメンテーション モデル (Mask-RCNN) を事前トレーニングしました。最も信頼度の高いセグメントは、最初のラベル付けに使用できます。

Fluid Annotation は、ユーザーが 1 回のクリックでオブジェクトにすばやくラベルを付けるための候補リストを生成します。また、ユーザーは、検出されていないオブジェクトをカバーする範囲マーカーを追加し、スクロールして最も適切な形状を選択することもできます。追加できるだけでなく、既存のオブジェクト タグを削除したり、オブジェクトの深度順序を変更したりすることもできます。

流動的な注釈付けの現在のフェーズの目標は、画像をより速く簡単に作成し、データセット全体のラベル付け速度を最大 3 倍に向上させることです。次に、Google はオブジェクト境界のラベル付けを改善し、より多くの人工知能を使用してインターフェース操作を高速化し、現在認識できないカテゴリを処理できるようにインターフェースを拡張します。

<<:  人工知能は人間の言語を習得したのか?見た目は騙されることがある

>>:  中国では普及していない無人コンビニが、なぜアメリカでは人気があるのか​​?

ブログ    
ブログ    

推薦する

...

SFが現実になる?偉大な劉慈欣がAI企業に入社

[[411067]]サイエンスフィクションと現実がこれほど近づいたことはかつてありませんでした。 「...

Huawei Cloud Tianchou AI Solverが世界人工知能会議で最高賞を受賞

7月6日、 2023年世界人工知能会議(WAIC 2023)が上海で開幕し、同会議の最高賞である「優...

ライフル銃で動くロボット犬の発明者が恐怖を巻き起こす:プログラミング制御は恐れる必要はない

[[429985]]先週、米国陸軍協会(AUSA)の会議がワシントンで開催されました。アメリカのロボ...

2023年のGenAI技術応用動向の観察

生成型人工知能 (GenAI) は技術革新の最前線にあり、さまざまな業界の変革と発展に新たな可能性を...

AIGC の 7 つの暗い側面

AIGC アルゴリズムがあらゆるスタイルの素晴らしいアートワークを生成し、素晴らしい文法で長い記事を...

すべてのAI公開コースが無料でご利用いただけます! 14 のカテゴリ、230 のコース、6,000 以上の GitHub スター

十分に読書をして直感を養い、直感を信じて挑戦してみましょう。たくさんの読書を通して直感を養い、自分の...

レポート:AI脅威論は誇張されている:導入と保守のコストが高いため、影響はそれほど早く広範囲に及ぶことはない

MITコンピュータ科学・人工知能研究所(MIT CSAIL)は3月3日、現段階では人間はAIに仕事を...

OpenAIが「Copyright Shield」機能を開始、AI著作権問題の支払いプラットフォーム

IT Homeは11月7日、本日開催されたOpenAI初の開発者会議で、OpenAIが「Copyri...

...

キロメートル認識誤差5%未満の世界最先端の超長距離精密3Dセンシング技術をリリース。

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

ワンジ自動車ミリ波レーダーポイントクラウド技術の分析

レーダー点群のセマンティックセグメンテーションは、レーダーデータ処理における新たな課題です。このタス...

Pytorch チュートリアル: 初心者向けクイックガイド

Python は、オープンソースの ML ライブラリ Pytorch のおかげで、データ サイエンス...

最初のRISC-Vラップトップが公開される、またはWindowsシステムが搭載されると思われますが、年末までに利用可能になりますか

チップ業界では、Armとx86が現在の主流のアーキテクチャであり、オープンなRSIC-Vが将来の方向...