自然言語処理 (NLP) はコンピューター ビジョン (CV) よりも開発が遅く、より困難です。

自然言語処理 (NLP) はコンピューター ビジョン (CV) よりも開発が遅く、より困難です。

[[248743]]

1. 先を行くNLP

NLP 開発の歴史は非常に古く、コンピュータが発明されて以来、人々は言語処理を必要としてきました。コンピュータの歴史を通じて、さまざまな文字列アルゴリズムが使用されてきました。偉大なチョムスキーは、人間が言語を処理するための最も基本的なフレームワークである生成文法、オートマトン(正規表現)、ランダム文脈自由構文木、文字列マッチングアルゴリズム KMP、動的プログラミングを提唱しました。

スパム分類などのテキスト分類などの NLP タスクは非常に早い段階で成熟しており、Naive Bayes は優れた結果を達成できます。 20 年前は、純粋な統計と規則を使用して機械翻訳が可能でした。比較すると、CV 分野では、当時 MNIST 分類はまだ完了していませんでした。

1990 年代には、情報検索の発展により BM25 などの一連のテキスト マッチング アルゴリズムが提案され、Google などの検索エンジンの発展により NLP は頂点に達しました。 CV分野に比べると、ちょっと暗いですね。

2. 特徴抽出が難しいCV

CVの前身は画像処理という分野で、画像の圧縮やフィルタリング、エッジ抽出などを研究し、レナという美女を毎日いじっていた。

[[248744]]

コンピューター ビジョンの初期の分野では、特徴抽出の難しさに悩まされていました。HOG もさまざまな手動の特徴抽出方法も、あまり良い結果を達成できませんでした。

大規模な商用化は困難です。同時に、NLP における手動機能 + SVM が非常に人気になりました。

3. ディープラーニングの台頭 - 自動特徴抽出

近年、非常に人気のあるディープラーニング モデルは、次のように簡単にまとめることができます。

ディープラーニング = 特徴抽出器 + 分類器

これにより、CV では手動で特徴を抽出するのが難しいという問題が解決され、CV は爆発的に進歩しました。ディープラーニングの考え方は、モデルがデータから特徴抽出を自動的に学習し、手動で抽出するのが難しい多くの特徴を生成することです。

4. NLPの知識のジレンマ

このディープラーニングの波の中で NLP が進歩していないわけではありませんが、そのブレークスルーは CV ほど大きくありません。多くのテキスト分類タスクでは、非常に複雑な双方向 LTSM を使用した場合の効果は、手動で特徴 + SVM を実行する場合とそれほど変わらない可能性があります。SVM は高速かつコンパクトで、大量のデータを必要とせず、GPU も必要ありません。多くのシナリオでは、ディープラーニング モデルは必ずしも SVM や GBDT などの従来のモデルよりも優れているわけではありません。

NLP のより大きな課題は、知識のジレンマにあります。 CV の知覚知能とは異なり、NLP は認知知能です。認知には必然的に知識の問題が伴い、知識は最も離散的で表現が難しいものです。

<<:  AIと子ども経済が出会うとき、どうすれば中心的ポジションにデビューできるのか?

>>:  Amazon SageMaker を使用した機械学習モデルのトレーニングとデプロイ

ブログ    
ブログ    
ブログ    
ブログ    

推薦する

AIOps に関する 6 つの誤解とその説明

[[387871]] AIOps とは何でしょうか? IT リーダーは、AIOps に関する一般的な...

NetEase はデータ指標の異常をどのように検出し、診断するのでしょうか?

1. 背景指標はビジネスと密接に関係しており、その価値は、問題点やハイライトを発見し、タイムリーに...

ビッグスリー:ディープラーニングの未来

【51CTO.com 速訳】ディープラーニングの課題過去数年間で、ディープラーニング モデルの主要構...

原理、コード、デモを備えたこのアルゴリズム リソースは人気を博しています。 GitHub で 2900 以上のスターを獲得

最近、GitHub で非常に包括的なアルゴリズム リソースが人気を集めています。対応する原理の紹介と...

ディープラーニング プロジェクトをゼロから構築するにはどうすればよいでしょうか?詳細なチュートリアルはこちら

ディープラーニングに関する理論コースを受講した後、多くの人が独自のプロジェクトを構築してみることに興...

警告!長距離LiDAR認識

この記事は、Heart of Autonomous Driving の公開アカウントから許可を得て転...

LIMEを使用してさまざまな機械学習モデルのコード例を説明する

機械学習モデルはますます洗練され、正確になってきていますが、その不透明性は依然として大きな課題となっ...

人工知能の旅:プロトタイピングは始まりに過ぎない

国内外で人工知能や機械学習のチームが大きな成果のニュースを共有し続けているのをよく見かけますが、実用...

OpenAIはニューヨークタイムズの声明は一方的であると不公平だと叫び、アンドリュー・ン氏もそれを擁護した。

2023年末、ニューヨーク・タイムズはマイクロソフトとOpenAIを訴えるための強力な証拠を提示し...

...

...

機械学習は科学プロジェクトからビジネスプランまで3段階の戦略を完了します

【51CTO.com クイック翻訳】 2015年は機械学習技術が学術分野で形を成した年でした。具体的...

...