データ サイエンティストは機械学習モデルを作成した後、それを本番環境にデプロイする必要があります。さまざまなインフラストラクチャで実行するには、コンテナを使用し、REST API を通じてモデルを公開するのが、機械学習モデルをデプロイする一般的な方法です。この記事では、Podman コンテナで Connexion を使用して、REST API で TensorFlow 機械学習モデルを起動する方法を説明します。 準備するまず、次のコマンドで Podman をインストールします。
次に、コンテナ用の新しいフォルダーを作成し、そのディレクトリに移動します。
TensorFlow モデル用の REST API次のステップは、機械学習モデル用の REST API を作成することです。この github リポジトリには、事前トレーニング済みのモデルと、REST API を動作させるためのセットアップが含まれています。 次のコマンドを使用して、
prediction.py と ml_model/prediction.py は Tensorflow 予測を実行し、20x20x20 ニューラル ネットワークの重みはフォルダー ml_model/ にあります。 swagger.yamlswagger.yaml は、Swagger 仕様を使用して Connexion ライブラリ API を定義します。このファイルには、サーバーが入力パラメータの検証、出力応答データの検証、および URL エンドポイントの定義を提供するために必要なすべての情報が含まれています。 さらに、Connexion は、JavaScript を使用して API を呼び出し、DOM を更新する方法を示す、シンプルでありながら便利なシングルページ Web アプリケーションを提供します。
server.py と requirements.txtserver.py は、Connexion サーバーを起動するためのエントリ ポイントを定義します。
requirements.txt は、プログラムを実行するために必要な Python パッケージを定義します。
コンテナ化しましょう! Podman でイメージをビルドするには、上記の準備手順で作成した
次に、次のコマンドを使用してコンテナ イメージをビルドします。
コンテナの実行コンテナ イメージがビルドされ準備ができたら、次のコマンドを使用してローカルで実行できます。
Swagger/Connexion UI にアクセスしてモデルをテストするには、Web ブラウザに http://0.0.0.0:5000/ui と入力します。 もちろん、アプリケーション内の REST API を介してモデルにアクセスすることもできます。 |
>>: スクリーンはあなたの運命を変えることはできません! AI教育で裸で泳いでいるのは誰ですか? 16社が摘発される
ニューラル ネットワークを「騙す」ために使用される敵対的サンプルは、コンピューター ビジョンと機械学...
さまざまな言語、視覚、ビデオ、オーディオなどの大規模モデルのパフォーマンスが向上し続けるにつれて、マ...
この記事は公開アカウント「Reading Core Technique」(ID: AI_Discov...
人工知能(AI)は日々驚異的な速度で成長しており、それに伴い、さまざまな業界を取り巻く統計も変化して...
ポスト疫病時代において、オンライン経済は本格化し、電子商取引業界は新たな発展段階に入りました。業界で...
スタンフォード大学のエビ揚げロボットよりも強力なロボットが登場!最近、CMU の研究者たちは、オープ...
5月15日、マイクロソフトの人工知能およびIoT研究所が上海張江で正式に業務を開始し、第一陣として国...
ジャック・マー氏は今年の中国科学技術協会年次総会の開会式で、今後10年から20年の間に社会全体に大き...
理由はよく分かりませんが、WORD ファイル内のすべての日付が変更されました。WORD マクロ ウイ...