脆弱なニューラル ネットワーク: カリフォルニア大学バークレー校が敵対的サンプル生成のメカニズムを説明します。

脆弱なニューラル ネットワーク: カリフォルニア大学バークレー校が敵対的サンプル生成のメカニズムを説明します。

ニューラル ネットワークを「騙す」ために使用される敵対的サンプルは、コンピューター ビジョンと機械学習における注目の研究トピックです。敵対的サンプルを理解することによってのみ、安定した機械学習アルゴリズムを構築するためのアイデアを見つけることができます。この記事では、カリフォルニア大学バークレー校の研究者が敵対的サンプルを作成する 2 つの方法を実演し、その背後にある原理を説明しました。

ニューラルネットワークによる暗殺 – クレイジーに聞こえますか?いつか、これが実際に起こるかもしれないが、それはあなたが想像するような形ではないだろう。どうやら、ニューラル ネットワークはドローンを飛行させたり、その他の大量破壊兵器を操作したりするように訓練できるようです。しかし、無害な(そして現在利用可能な)ネットワーク、たとえば自動車の運転に使用されるネットワークであっても、自動車所有者の敵になる可能性があります。これは、ニューラル ネットワークが敵対的サンプルと呼ばれる攻撃に対して非常に脆弱であるためです。

ニューラルネットワークでは、ネットワークが誤った値を出力する原因となる入力は敵対的サンプルと呼ばれます。これは例によって最もよく説明されます。まずは左の写真から始めましょう。いくつかのニューラル ネットワークでは、この画像がパンダであると考えられる信頼度は 57.7% であり、パンダ カテゴリとして分類される信頼度はすべてのカテゴリの中で最も高いため、ネットワークは「画像にはパンダが含まれている」という結論に達します。ただし、慎重に作成されたノイズをごく少量追加すると、次のような画像 (右) が得られます。人間にとっては、左側の画像とほとんど同じに見えますが、ネットワークは 99.3% の信頼度で、これが「テナガザル」として分類されると考えています。これは本当にクレイジーだ!

上記の画像は、Goodfellow ら著「Explaining and Harnessing Adversarial Examples」からの引用です。

では、敵対的サンプルはどのようにして暗殺を実行するのでしょうか?一時停止の標識を敵対的サンプル、つまり人間は一時停止の標識だとすぐに認識できるが、ニューラル ネットワークは認識できないサンプルに置き換えることを想像してください。さて、この標識を交通量の多い交差点に設置するとします。自動運転車が交差点に近づくと、搭載されているニューラルネットワークが一時停止標識を認識できずに運転を続け、乗客が死亡する可能性がある(理論上)。

これは、敵対的事例がどのように害を及ぼすために使用されるかを示す、複雑でややセンセーショナルな多くの例のうちの 1 つにすぎません。たとえば、iPhone Xの「Face ID」ロック解除機能は、顔認識にニューラルネットワークに依存しているため、敵対的攻撃に対して脆弱です。敵対的な画像を作成することで、Face ID セキュリティ機能を回避することができます。他の生体認証セキュリティシステムも危険にさらされるでしょう。敵対的サンプルの使用により、違法または不適切なコンテンツがニューラルネットワークベースのコンテンツフィルターを回避する可能性があります。これらの敵対的サンプルの存在は、ディープラーニング モデルを含むシステムが実際には極めて高いセキュリティ リスクを抱えていることを意味します。

敵対的サンプルを理解するには、それをニューラル ネットワークに対する「幻覚」と考えることができます。幻覚が人間の脳を騙すのと同じように、敵対的事例もニューラル ネットワークを騙すことができます。

上記のパンダ敵対的サンプルは、ターゲットを絞った例です。慎重に作成された少量のノイズが画像に追加され、ニューラル ネットワークが画像を誤分類する原因となります。しかし、人間にとってはその画像は以前と同じように見えます。ニューラル ネットワークを騙す入力を単に見つけようとする非ターゲットの例もあります。人間にとって、この入力はホワイトノイズのように見えるかもしれません。ただし、人間に似た入力を見つけることに制約がないため、この問題ははるかに簡単です。

ほぼすべてのニューラル ネットワークで敵対的サンプルを見つけることができます。いわゆる「超人的な」能力を備えた最先端のモデルでさえ、この問題に多少悩まされています。実際、敵対的サンプルの作成は非常に簡単です。この記事では、その方法を説明します。独自の敵対的サンプルを生成するために必要なすべてのコードと資料は、この github にあります: https://github.com/dangeng/Simple_Adversarial_Examples

上の図は敵対的サンプルの効果を示している

MNIST における敵対的サンプル

このセクションのコードは、次のリンクにあります (ただし、この記事を読むためにコードをダウンロードする必要はありません)。https://github.com/dangeng/Simple_Adversarial_Examples

MNIST データセットでトレーニングされた通常のフィードフォワード ニューラル ネットワークを騙してみます。 MNIST は、次のような 28×28 ピクセルの手書き数字画像のデータセットです。

6つのMNIST画像を並べて表示

<<:  人工知能を活用して社会問題を解決する方法

>>:  ファーウェイ、次世代スマート製品戦略と新+AIシリーズ製品を発表

ブログ    
ブログ    

推薦する

マッキンゼーのレポート: 2030 年までに 8 億人が機械に置き換えられ、約 1 億人の中国人が転職を余儀なくされる!

マッキンゼー・グローバル・インスティテュートは最近の報告書で、テクノロジーの進歩により、将来世界で約...

李開復「2021年を予測」:4つの主要分野が前例のない発展の機会をもたらす

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

クラウド ネイティブが新たな標準になりますが、人工知能はそれに備えていますか?

テクノロジーの発展に伴い、クラウド コンピューティング テクノロジーは進歩し続け、その目的も変化して...

囲碁AIの不正行為の最初の事例はすでに発生しています。他の事例は後れを取っているのでしょうか?

[[227817]]画像出典: Visual Chinaカンニングは間違いなく長い歴史を持つ「科学...

...

...

ビッグデータの時代では、ソフトウェアエンジニアは徐々に減少し、アルゴリズムエンジニアが増加しています。

[[209263]]ビッグデータは人類の歴史のどの時代にも存在していましたが、テクノロジーが一定の...

中国の自動運転分類の国家基準が正式に発表され、来年3月に施行される予定

自動車の電動化や知能化が進む中、自動運転は人々の日常生活にますます近づきつつあります。現在、市場に出...

Mambaはこのように使用できます。バイトをトークンに分割せずに効率的に学習します。

言語モデルを定義するときは通常、基本的な単語分割方法を使用して文を単語、サブワード、または文字に分割...

MySQL などの従来のリレーショナル データベースは弱すぎます。 GPU データベースは将来のトレンドです!

データベース市場でMySQLの地位を揺るがすようなデータベースが登場したのは久しぶりのようです。主要...

人工知能が診断ツールをどのように変えるのか

医療においては、新しいアイデアが常に命を救うのに役立ちます。 1895 年にウィレム・アイントホーフ...

Googleはロボットを大規模な言語モデルの手と目として機能させ、タスクを16のアクションに分解して一度に完了させます。

大型モデルはロボット工学の分野でその地位を確立しました。 「飲み物をこぼしてしまいました。助けてくれ...

アリババDAMOアカデミーが自動運転の技術的困難を突破:3D物体検出の精度と速度の両方を実現

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

人工知能搭載の携帯電話は私たちの生活をどのように変えるのでしょうか? 携帯電話メーカーが何をしてきたか見てみましょう。

チャットができる「インテリジェント音声アシスタント」から、さまざまな家電を操作できるスマートスピーカ...

人工知能が将来の経済と社会に与える影響を理解する方法

[[353152]]人工知能は新興の破壊的技術として、科学技術革命と産業変化によって蓄積された膨大な...