2019年の人工知能の給与水準、まずは全体の給与水準の2つの分析グラフを見てみましょう! ***は、異なるレベルの給与の分布を示すグラフです。 2枚目の図は、人工知能業界とインターネット業界の給与比較です。職務経験が増えるにつれて、給与水準は徐々に上昇します。 上記は、人工知能分野の現在の給与水準の大まかな概要です。 展望がわかったところで、人工知能を学ぶ方法を見てみましょう。基本的な知識がまったくない場合、ある程度の知識がある場合は、すでに習得しているテクニックの一部をスキップできます。 1. 実践的な基礎、高度な数学と Python プログラミング言語を学びます。 人工知能には多くのデータとアルゴリズムの問題が含まれており、これらのアルゴリズムは数学的に導き出されるため、アルゴリズムを理解したい場合は、まず高度な数学の知識を習得する必要があります。 まずは、基本的なデータ分析、線形代数、行列などから始めて、高度な数学の基礎知識を徹底的に学びます。基礎があって初めて、層ごとに積み重ねていきます。論理なしに一度に1つずつ学ぶことはできません。 次のステップは、Python プログラミング言語を学ぶことです。Python には豊富で強力なライブラリがあり、人工知能の学習のための基本的なプログラミング言語として非常に適しています。 2. ステージ昇格、機械学習アルゴリズムの学習+実践演習を開始します。 上記の基礎を習得した後は、機械学習アルゴリズムの学習を開始し、ケース実践を通じて理解と習熟を深める必要があります。挑戦できる小さな機械学習のケースがたくさんあります。前半をしっかりマスターすれば、後半はずっと簡単になります。 3. 自分自身に挑戦し続け、ディープラーニングに取り組んでください。 ディープラーニングでは、モデルをトレーニングするために大量のラベル付きデータが必要なので、データマイニングとデータ分析のスキルを習得し、それらを使用してモデルをトレーニングする必要があります。ここで疑問に思うことがあるかもしれません。ディープラーニングには多くのニューラルネットワークが関係していて、非常に複雑に見えます。これらのニューラルネットワークを編集するのは難しいはずです。心配しないでください。Google、Amazon、Microsoftなどの大企業は、すでにこれらのニューラルネットワークモデルをそれぞれのフレームワークにカプセル化しています。それらを呼び出すだけです。 4. 練習を続けて、強さと経験を増やしましょう。 実際の戦闘は真実をテストするための最良の基準です。基本的な技術理論を習得したら、さらに練習を重ね、理論を継続的に検証し、技術を更新する必要があります。条件が許せば、プロジェクトの初期のデータマイニングから始めて、中間モデルをトレーニングし、興味深いプロトタイプを作成し、一連のプロセス全体を実行できます。これで、おめでとうございます。ジュニア人工知能エンジニアのレベルに到達しました。 |
<<: プログラマーを怒らせると何が起こるでしょうか?アリババDAMOアカデミーの専門家は嫌がらせ電話に耐えられず、「Erha」AIを開発した
>>: 2019 年に注目すべき 11 の JavaScript 機械学習ライブラリ
最近、ドリームワークスの創設者ジェフリー・カッツェンバーグ氏は、生成AIの技術がメディアとエンターテ...
ミスティはとんでもない乗り心地を体験した。 FoundryとVenrockから1,150万ドルを調達...
検出が難しい膠芽腫などの癌の生存率は1桁ですが、早期治療には検出、治療、監視のための高度な技術が必要...
AI が社会に重大なリスクをもたらすという警告が見出しで報じられているにもかかわらず、ボストン コン...
[[220586]]編纂者:ウェンミン、ダ・ジェチョン、ティエンペイ最も広く使用されている機械学習手...
遠隔医療の普及に伴い、便利で効率的な医療サポートを求める患者にとって、オンライン医療相談が第一の選択...
1. 人工知能と機械学習記事を始める前に、下の図 1.1 に示すように、人工知能、機械学習、ディープ...
ご存知のとおり、コンピューティング パワーの文字通りの意味はコンピューティング能力です。 「コンピュ...
人工知能の分野では、スタンフォード大学が開始したAIインデックスは、AIの動向と進歩を追跡する非営利...
[51CTO.comからの原文] 人工知能、モノのインターネット、ブロックチェーンなどの最先端技術が...
[[431999]]新しい世代が古い世代に取って代わると、古い世代はどこへ行くのでしょうか。今日、2...
人工知能技術の台頭に伴い、AIの問題点が徐々に明らかになってきました。 AI による決定は、依然とし...