GitHubで3,000以上のいいねを獲得した「機械学習ロードマップ」は、モンスターをアップグレードして倒す方法を教えてくれる

GitHubで3,000以上のいいねを獲得した「機械学習ロードマップ」は、モンスターをアップグレードして倒す方法を教えてくれる

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載しています。転載の際は出典元にご連絡ください。

インターネットの問題の一つは、情報が多すぎることです。

機械学習を学びたい人にとって、情報が多すぎるのも問題です。公開コース、書籍、フレームワーク、オープンソースコードが非常に多くあります。それぞれの情報セットには独自の利点があります。このコースが良いと言う人もいれば、あのフレームワークが最も役立つと言う人もいます。

では、初心者はどこから始めればよいのでしょうか?どれが学習に適していますか?

[[260462]]

この問題を発見したのは、Giacomo Ciarlini というイタリア人です。彼は上司が新入社員をトレーニングするのを支援するために、機械学習の分野で必要なすべての知識を機械学習ロードマップにまとめました。

プログラミングと数学から始めて、徐々にさまざまな概念、方法、ニューラル ネットワークを学び、オープン ソース プロジェクトを研究し、最終的には機械学習の専門家の世代になります。

初心者の村から最高レベルまでモンスターをアップグレードして倒すのと同じように、このロードマップに従うことで、装備が整った、熟練した、経験豊富なマスター プレイヤーに成長できます。

4つの学習パート

まず、機械学習を独学で学び始める前に、いくつかの準備を行う必要があります。

事前に準備する

パイソン

ジュピターノートブック

数学

機械学習の概要

まず、プログラミング言語を知る必要があります。機械学習で最もよく使われる言語であるPythonを学びましょう。

Jupyter ノートブックもよく使われるツールです。ダウンロードする必要がなく、Web 上で直接使用できます。オンライン コーディングが可能です。重要なアプリケーションやチュートリアルも Jupyter 上に多数あるため、ぜひ習得してください。

***、機械学習に取り組むには、いくつかの数学的原理と機械学習の基礎知識を理解する必要があります。

Scikit-Learn による機械学習

Scikit-Learn を選ぶ理由

エンドツーエンドの機械学習プロジェクト

線形回帰

分類

モデルのトレーニング

サポートベクターマシン

決定木

アンサンブル学習とランダムフォレスト

教師なし学習

レビュー

その後、機械学習タスク用の最も完全で成熟した、十分に文書化されたライブラリの 1 つである Scikit-Learn をインストールします。その後、ロードマップに従って線形回帰、分類などを学習し、実践することができます。

もちろん、それぞれの知識ポイントごとに参考資料を用意してありますので、それを順を追って理解していただけます。

TensorFlow とニューラル ネットワーク

TensorFlow を使用する理由は何ですか?

TensorFlow が稼働中

ANN - 人工ニューラルネットワーク

CNN - 畳み込みニューラルネットワーク

RNN - リカレントニューラルネットワーク

ネットワークのトレーニング: *** 実践

自動エンコード

強化学習

次のステップ

さあ、TensorFlow の世界に入りましょう。もちろん、Facebook が開発した PyTorch の方が優れたフレームワークだと考える開発者が増えていますが、TensorFlow は依然として最も多くのユーザーを抱えるフレームワークです。

役に立つ情報

機械学習プロジェクト

データサイエンスツール

ブロガーを推薦する

最も基本的なことをマスターしたら、さまざまな豊富な資料を読んだり、さまざまな人気プロジェクトを学習したりすることができます。最新の画期的なプロジェクトに注目することを忘れないでください。そうしないと、機械学習の分野における急速な進歩と画期的な進歩についていくことができなくなります。

***、そこに記載されているすべての資料とコースには、元の GitHub テキストへのリンクがあります。

続編がある

機械学習に加えて、ビジネスインテリジェンス分析やクラウドコンピューティングアーキテクトの分野でも学習ロードマップを準備しています。

また、データ可視化、データ収集、データ前処理というデータに関わる3つの分野も展開していく予定です。将来的に「転職」が必要になった場合は、これらの学習も検討してみてはいかがでしょうか。

テクノロジー関連だけでなく、効果的なコミュニケーション、影響力のあるスピーチ、実用的な意思決定の3つの分野でロードマップの立ち上げも準備中。テクノロジーからマネジメントへと転身した、まさにオールラウンダーであり、35歳を過ぎても淘汰されることはない。

ポータル

https://github.com/clone95/Machine-Learning-Study-Path-March-2019

<<:  オラクルCEOハード氏「AIについて心配する必要はない」

>>:  Amazon のニューラル ネットワークに関する書籍トップ 10

ブログ    
ブログ    

推薦する

スタンフォードグローバルAIレポート:人材需要は2年間で35倍に増加し、中国のロボット導入は500%増加

先ほど、スタンフォード グローバル AI レポートが正式に発表されました。スタンフォード大学は昨年か...

人工知能の台頭が懸念を引き起こしています。私たちはどう対応すべきでしょうか?

AlphaGoがイ・セドルに勝利したことで世界は人工知能に再び親しむようになったが、アップグレード...

ディープラーニングでよく使われる8つの活性化関数

活性化関数(変換関数とも呼ばれる)は、ニューラル ネットワークを設計するための鍵となります。活性化関...

AI導入によるエッジインテリジェンスの強化

エッジに AI を導入すると、強力なリアルタイム分析と処理を実現できる可能性があります。使用例には、...

言語間、人間の声と犬の鳴き声の相互変換をサポートし、最も近いものだけを使用するシンプルな音声変換モデルはどれほど素晴らしいか

AIが関わる音声の世界はまさに魔法のようです。ある人の声を別の人の声に置き換えるだけでなく、動物と声...

AIをめぐる世界的な競争でリードしているのは中国、米国、それともヨーロッパか

現在、世界中でAI関連企業に多額の投資が流入しており、トップ研究機関の科学者が毎週、さまざまなAIア...

人工知能を活用してビジネスを成長させ、企業価値を創造する方法

組織は、全員を関与させれば、AI を活用してビジネスを成長させることができます。人工知能への投資は、...

...

次世代人工知能の開発方向(第2部)

[[349523]]人工知能は半世紀以上前から存在していますが、人工知能の分野は過去 10 年間で...

マルウェアの検出と分類にディープラーニングが広く利用されている理由

人工知能 (AI) は進化を続けており、過去 10 年間で驚異的な進歩を遂げてきました。ディープラー...

...

ChatGPTの10の実用的なビジネスユースケース

ChatGPT のビジネスユースケースは数多く登場していますが、組織は自社の特定のニーズに最適なシナ...

DeepMind がワンクリックで「Mole」言語モデルを起動します。 2,800億のパラメータがSOTAに到達可能

太い眉毛と大きな目を持つ「強化学習の専門家」も、大規模言語モデルに取り組み始めているのでしょうか? ...

エッジAI + コンピュータービデオが木製ラック業界に新たな風を吹き込む

北京、12月30日:インテリジェントな要素がエッジに向かって動いています。データ収集速度が向上するに...