GitHubで3,000以上のいいねを獲得した「機械学習ロードマップ」は、モンスターをアップグレードして倒す方法を教えてくれる

GitHubで3,000以上のいいねを獲得した「機械学習ロードマップ」は、モンスターをアップグレードして倒す方法を教えてくれる

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載しています。転載の際は出典元にご連絡ください。

インターネットの問題の一つは、情報が多すぎることです。

機械学習を学びたい人にとって、情報が多すぎるのも問題です。公開コース、書籍、フレームワーク、オープンソースコードが非常に多くあります。それぞれの情報セットには独自の利点があります。このコースが良いと言う人もいれば、あのフレームワークが最も役立つと言う人もいます。

では、初心者はどこから始めればよいのでしょうか?どれが学習に適していますか?

[[260462]]

この問題を発見したのは、Giacomo Ciarlini というイタリア人です。彼は上司が新入社員をトレーニングするのを支援するために、機械学習の分野で必要なすべての知識を機械学習ロードマップにまとめました。

プログラミングと数学から始めて、徐々にさまざまな概念、方法、ニューラル ネットワークを学び、オープン ソース プロジェクトを研究し、最終的には機械学習の専門家の世代になります。

初心者の村から最高レベルまでモンスターをアップグレードして倒すのと同じように、このロードマップに従うことで、装備が整った、熟練した、経験豊富なマスター プレイヤーに成長できます。

4つの学習パート

まず、機械学習を独学で学び始める前に、いくつかの準備を行う必要があります。

事前に準備する

パイソン

ジュピターノートブック

数学

機械学習の概要

まず、プログラミング言語を知る必要があります。機械学習で最もよく使われる言語であるPythonを学びましょう。

Jupyter ノートブックもよく使われるツールです。ダウンロードする必要がなく、Web 上で直接使用できます。オンライン コーディングが可能です。重要なアプリケーションやチュートリアルも Jupyter 上に多数あるため、ぜひ習得してください。

***、機械学習に取り組むには、いくつかの数学的原理と機械学習の基礎知識を理解する必要があります。

Scikit-Learn による機械学習

Scikit-Learn を選ぶ理由

エンドツーエンドの機械学習プロジェクト

線形回帰

分類

モデルのトレーニング

サポートベクターマシン

決定木

アンサンブル学習とランダムフォレスト

教師なし学習

レビュー

その後、機械学習タスク用の最も完全で成熟した、十分に文書化されたライブラリの 1 つである Scikit-Learn をインストールします。その後、ロードマップに従って線形回帰、分類などを学習し、実践することができます。

もちろん、それぞれの知識ポイントごとに参考資料を用意してありますので、それを順を追って理解していただけます。

TensorFlow とニューラル ネットワーク

TensorFlow を使用する理由は何ですか?

TensorFlow が稼働中

ANN - 人工ニューラルネットワーク

CNN - 畳み込みニューラルネットワーク

RNN - リカレントニューラルネットワーク

ネットワークのトレーニング: *** 実践

自動エンコード

強化学習

次のステップ

さあ、TensorFlow の世界に入りましょう。もちろん、Facebook が開発した PyTorch の方が優れたフレームワークだと考える開発者が増えていますが、TensorFlow は依然として最も多くのユーザーを抱えるフレームワークです。

役に立つ情報

機械学習プロジェクト

データサイエンスツール

ブロガーを推薦する

最も基本的なことをマスターしたら、さまざまな豊富な資料を読んだり、さまざまな人気プロジェクトを学習したりすることができます。最新の画期的なプロジェクトに注目することを忘れないでください。そうしないと、機械学習の分野における急速な進歩と画期的な進歩についていくことができなくなります。

***、そこに記載されているすべての資料とコースには、元の GitHub テキストへのリンクがあります。

続編がある

機械学習に加えて、ビジネスインテリジェンス分析やクラウドコンピューティングアーキテクトの分野でも学習ロードマップを準備しています。

また、データ可視化、データ収集、データ前処理というデータに関わる3つの分野も展開していく予定です。将来的に「転職」が必要になった場合は、これらの学習も検討してみてはいかがでしょうか。

テクノロジー関連だけでなく、効果的なコミュニケーション、影響力のあるスピーチ、実用的な意思決定の3つの分野でロードマップの立ち上げも準備中。テクノロジーからマネジメントへと転身した、まさにオールラウンダーであり、35歳を過ぎても淘汰されることはない。

ポータル

https://github.com/clone95/Machine-Learning-Study-Path-March-2019

<<:  オラクルCEOハード氏「AIについて心配する必要はない」

>>:  Amazon のニューラル ネットワークに関する書籍トップ 10

ブログ    

推薦する

...

LinkedIn は、すべてのユーザーに公開される生成 AI 支援投稿作成機能を開始しました。

職場向けソーシャルプラットフォーム「LinkedIn」は6月26日、広告主が生成AIを通じてマーケテ...

いくつかのシンプルな負荷分散アルゴリズム

負荷分散とは負荷分散(英語名は Load Balance)とは、複数のサーバーを対称的に構成したサー...

ハイブリッドAIは企業がデータの価値を掘り出すための好ましい方法である

人工知能については、誰もがよくご存知だと思います。実際、人工知能には幅広い知識が含まれており、さまざ...

Google の時間は残りわずか: 18 歳の従業員が辞職し、経営陣を非難

インターネット企業の中で、Google は間違いなく勝者であり、方向性をリードする企業です。同社の技...

顔認識禁止が迫る:テクノロジー企業はどこへ向かうべきか?

この記事は公開アカウント「Reading Core Technique」(ID: AI_Discov...

ジェネレーティブAIを管理する方法

ドム・クッドウェル著ノアが編集制作:51CTO テクノロジースタック(WeChat ID:blog)...

2019年のAI研究開発のホットスポットのレビュー

人工知能技術を継続的に改善することで、より優れたインテリジェントな世界を創造することができます。 2...

OpenAI、「超知能」AIを制御するための新チームを発表

米国現地時間7月6日水曜日、人工知能の新興企業OpenAIは、「超知能」人工知能システムを誘導・制御...

...

ChatGPT のパフォーマンスが最大 214% 向上し、7 つのグラフが更新されました。 IDEA、HKUST GuazhouなどがToG思考マップを提案

大きなモデルは良いですが、「深刻なナンセンス」の問題をどのように解決するのでしょうか?金融、法律、医...

「何千人もの人々の何千もの顔」を解読し、ユーザーのポートレートを深く解釈する方法

[[201075]]ユーザー ポートレートの概念は非常に人気があります。多くの企業が「ユーザー ポー...

[NCTSサミットレビュー] Testin Xu Kun: AIが次世代のテストをリード、iTestinがテストの未来を書き換える

2019年10月26日、Testinが主催する第2回NCTS中国クラウドテスト業界サミットが北京で開...

100,000 台以上の Vision Transformer を一度にトレーニングするにはどうすればよいでしょうか?

[[413052]]この記事はLeiphone.comから転載したものです。転載する場合は、Lei...