最も人気のある 5 つの人工知能プログラミング言語の比較。1 つだけでも学ぶ価値があります。

最も人気のある 5 つの人工知能プログラミング言語の比較。1 つだけでも学ぶ価値があります。

ほとんどのソフトウェア アプリケーション開発と同様に、開発者は複数の言語を使用して AI プロジェクトを記述していますが、AI プロジェクトと完全に互換性のある単一の最適なプログラミング言語は存在しません。

プログラミング言語の選択は、多くの場合、AI アプリケーションに必要な機能によって決まります。最高の人工知能プログラミング言語に関する議論は止むことなく続いています。そこで今日、Tesra Supercomputing Network は人工知能プロジェクトで最もよく使用される 5 つのプログラミング言語を比較し、それぞれの長所と短所をリストします。一緒に見てみましょう!

[[261766]]

パイソン

Python は、その構文、シンプルさ、汎用性により、開発者の間で AI 開発に最も好まれるプログラミング言語です。 Python の最も魅力的な点の 1 つは、その移植性です。Linux、Windows、Mac OS、UNIX などのプラットフォームで使用できます。ユーザーがインタラクティブ、解釈型、モジュール型、動的、移植可能、かつ高度なコードを作成できるようにします。

さらに、Python は、オブジェクト指向、手続き型、関数型のプログラミング スタイルをサポートするマルチパラダイム プログラミング言語です。 Python は、シンプルな関数ライブラリと理想的な構造により、ニューラル ネットワークと NLP ソリューションの開発をサポートします。

アドバンテージ

Python には豊富なライブラリとツールがあります。

アルゴリズムを実装せずにテストをサポートします。

Python のオブジェクト指向設計により、プログラマーの生産性が向上します。

Python は、Java や C++ に比べて開発が高速です。

欠点

Python を使用して人工知能プログラムを作成することに慣れているプログラマーは、他の言語の構文に適応するのが難しいと感じています。

C++ や Java とは異なり、Python はインタープリターの助けを借りて動作する必要があり、AI 開発におけるコンパイルと実行の速度が低下します。

モバイルコンピューティングには適していません。

C++

アドバンテージ

C++ は最も高速なコンピュータ言語です。AI プロジェクトが特に時間に敏感な場合は、実行時間と応答時間が速い C++ が適しています (検索エンジンやゲームでよく使用されるのはこのためです)。さらに、C++ は幅広いアルゴリズムを可能にし、統計的人工知能技術の使用に効果的です。もう 1 つの重要な要素は、C++ が開発中のコードの再利用をサポートしていることです。

C++ は機械学習やニューラル ネットワークに適しています。

欠点

マルチタスクには適していません。C++ は、特定のシステムまたはアルゴリズムのコアまたは基盤を実装する場合にのみ適しています。

これはボトムアップのアプローチに従うため、非常に複雑です。

また、開発者やプログラミング学習者として優秀で有能なプログラマーになりたいのであれば、学習環境やコミュニケーションサークルを持つことが特に重要です。ここで、C 言語 c+ コミュニケーション Q グループ 7-4-1-8-1-8-6-5-2 をお勧めします。専門家でも初心者でも、私たちは皆一緒に成長し、向上することができます。

[[261767]]

ジャワ

Java は、オブジェクト指向の原則と、Write Once Read / Run Anywhere (WORA) の原則に従うマルチパラダイム言語でもあります。これは、再コンパイルを必要とせずに、それをサポートする任意のプラットフォームで実行できる AI プログラミング言語です。

Java は、さまざまなプロジェクトの開発でよく使用される言語の 1 つです。NLP や検索アルゴリズムだけでなく、ニューラル ネットワークにも適しています。

リスプ

アドバンテージ

Lisp はコンピュータ プログラミング言語であり、Fortran に次いで 2 番目に古いプログラミング言語です。時間の経過とともに、LISP は強力で動的なコーディング言語へと進化しました。

Lisp は開発者に自由度を与えるため、最高の人工知能プログラミング言語であると考える人もいます。 Lisp は柔軟性が高く、迅速なプロトタイピングと実験が可能なため、人工知能で使用されています。これにより、AI 開発における Lisp の開発が促進されます。たとえば、Lisp には、さまざまなレベルのインテリジェンスの開発と実装に役立つ独自のマクロ システムがあります。

ほとんどの AI プログラミング言語とは異なり、Lisp はソリューションを作成する開発者のニーズに適応するため、特定の問題を解決するのに効率的であり、帰納的論理プロジェクトや機械学習に適しています。

欠点

Lisp プログラミングに精通している開発者はほとんどいません。

Lisp は古いプログラミング言語であるため、その使用に対応するために新しいソフトウェアとハ​​ードウェアを構成する必要があります。

[[261768]]

プロローグ

Prolog は、最も古いプログラミング言語の 1 つでもあります (まだ触れたことがない方もいるかもしれません)。Lisp と同様に、人工知能プロジェクトの開発によく使用される言語でもあります。柔軟なフレームワーク メカニズムを備えています。ルールベースの宣言型言語であり、人工知能コーディング言語を決定する事実とルールが含まれています。

Prolog は、パターン マッチング、ツリーベースのデータ構造、人工知能プログラミングの自動バックトラッキングなどの基本的なメカニズムをサポートしています。 Prolog は人工知能プロジェクトで広く使用されているほか、医療システムの作成にも使用されています。

これら 5 つのプログラミング言語のいずれかを学習することは、人工知能の時代に大きな助けとなるでしょう。他に何かアイデアがありましたら、ぜひコメント欄にコメントを残してください。

<<:  2019 年に TensorFlow は王座から退いたのでしょうか?

>>:  2019 年に CIO が AI 導入をリードできる 5 つの方法

ブログ    
ブログ    

推薦する

...

圧縮アルゴリズムについての簡単な説明

1. 冒頭発言お久しぶりです。白部長です。研究であれ実践であれ、既存の問題、解決策、ボトルネック、突...

OpenAI は PyTorch、TensorFlow を全面的に採用していますが、なぜそれほど優れていないのでしょうか?

TensorFlow と PyTorch フレームワーク間の戦いは長い間続いています。最近のニュー...

...

エンドツーエンドの自動運転に向けて、Horizo​​n Robotics が Sparse4D アルゴリズムを正式にオープンソース化

Horizo​​n Roboticsは1月22日、純粋な視覚ベースの自動運転アルゴリズムであるSpa...

DAMOアカデミーが大規模モデルテストベンチマークを発表: GPT-4はかろうじて合格、他のモデルはすべて不合格

ビッグモデルの発展、特に最近のさまざまなオープンソースのビッグモデルのリリースにより、さまざまなモデ...

ハルビン工業大学人工知能研究所が設立され、4つのレベルと7つの方向でAIの発展をリードしています

5月5日、ハルビン工業大学(HIT)人工知能研究所の除幕式と「知能・未来創造」ハイエンド人工知能フォ...

目に見える機械学習: ニューラルネットワークをゼロから理解する

機械学習に関する古いジョークがあります。機械学習は高校のセックスのようなものです。誰もがやっていると...

...

2.5 ~ 4 倍の深さで、より少ないパラメータと計算量で、DeLighT はどうやってそれを実現したのでしょうか?

ディープラーニングはパラメータが多すぎる、モデルが大きすぎる、展開が不便、そしてコンピューティングリ...

人工知能(AI)がサプライチェーンに導入されると

サプライチェーンを理解する簡単に言えば、サプライ チェーンには、製品またはサービスをエンド ユーザー...

Java 実装と読み取り/書き込みロック アルゴリズムの考え方

問題の背景: 複数のスレッドが共有リソースへの読み取りおよび書き込みアクセスを実行します。書き込みス...

Cloud Pak for Data 3.0は、企業のコスト削減と効率性の向上を支援し、AI導入を加速します。

[[335519]]感染症流行後も実体経済は厳しい状況が続いている。生産停止、収益の急激な減少、資...

米軍のAIブラックテクノロジー:暗闇でも正確に顔を認識できる。これに不安を感じる人はいるだろうか?

[[227002]]今日お話しするのは、「そんな手術があるの?」と第一印象でとても驚く内容ですが、...