マイクロソフト、解釈可能な機械学習ツールキット「InterpretML」をオープンソース化

マイクロソフト、解釈可能な機械学習ツールキット「InterpretML」をオープンソース化

[[264976]]

[画像出典: Microsoft Research ブログ 所有者: Microsoft Research ブログ]

人間は人工知能を生み出し、その生活は人工知能の影響を受けます。人工知能の行動が理解できれば、人間は人工知能をさらに活用できるようになります。最近、Microsoft Research は機械学習の理解可能性に関する記事を公開しました。Leifeng.com による全文の翻訳は以下の通りです。

AI システムが人間の生活に影響を与える場合、人々がその動作を理解することは非常に重要です。 AI システムの動作を理解することで、データ サイエンティストはモデルを適切に調整できます。モデルがなぜそのように動作するのかを説明できれば、設計者はその情報をエンドユーザーに伝えることができます。医師、裁判官、その他の意思決定者がこの強化されたインテリジェンス システムのモデルを信頼すれば、より優れた意思決定を行うことができます。さらに広い意味では、モデルの理解がより深まるにつれて、エンドユーザーが AI 主導の製品やソリューションをより迅速に導入する可能性が高くなり、規制当局の高まる要求にも応えやすくなる可能性があります。

現実には、理解可能性を実現することは複雑であり、多くの変数と人的要因に大きく依存するため、「万能」なアプローチは不可能です。理解可能性は、機械学習、心理学、人間とコンピュータの相互作用、デザインのアイデアに基づいた最先端の学際的な研究分野です。

Microsoft Research は近年、理解しやすい人工知能を作成する方法の研究に取り組んできました。現在、Microsoft は MIT オープンソース プロトコルの下で InterpretML ソフトウェア ツールキットをオープンソース化しました。オープンソース アドレスは https://github.com/Microsoft/interpret で、開発者はモデルやシステムを説明するさまざまな方法を試すことができます。 InterpretML は、解釈可能なブースティング マシン (一般的な加法モデルの改善) を含む、多数の解釈可能なモデルを実装できるほか、ブラック ボックス モデルの動作や個々の予測の説明を生成するためのいくつかのメソッドも実装できます。

理解可能性の方法をいくつかの簡単な方法で評価することにより、開発者はさまざまな方法で生成された説明を比較し、ニーズに最も適したものを選択できます。たとえば、比較方法は、方法間の一貫性をチェックすることで、データ サイエンティストが説明にどの程度の信頼を置くべきかを理解するのに役立ちます。

Microsoft は、オープンソース コミュニティと協力して InterpretML の開発を継続することを楽しみにしています。オープンソースのアドレスは https://github.com/Microsoft/interpret です。

この記事はLeiphone.comから転載したものです。転載する場合は、Leiphone.com公式サイトにアクセスして許可を申請してください。

<<:  生成的敵対ネットワーク (GAN) の未解決の 7 つの謎

>>:  人間の脳をインターネットに接続するときは注意してください

ブログ    
ブログ    
ブログ    
ブログ    

推薦する

Huawei のフルシナリオ AI コンピューティング フレームワーク MindSpore がオープン ソースになりました。

Huawei の Mindspore AI コンピューティング フレームワークの公式オープン ソー...

RELX: 回答者の95%がAI人材の採用は課題であると考えている

海外メディアは、情報分析プロバイダーRELXの新しいレポートによると、回答者の95%が人工知能の人材...

商用顔認識は一時停止できるのか?

顔認証を防ぐために、市民は営業所を訪れる際にヘルメットをかぶっている。「初の顔認証事件」で、裁判所は...

Amazon AIテクノロジーの応用と戦略的なレイアウトの詳細な分析:Alexa

アマゾンは時価総額7,900億ドルでマイクロソフトを上回り、世界で最も価値のある企業となった。ジェフ...

RoboFusion: SAM による堅牢なマルチモーダル 3D 検査

この記事は、Heart of Autonomous Driving の公開アカウントから許可を得て転...

APP はユーザーのプライバシーと顔認識生体認証情報を深く掘り下げ、「データ疫病」の到来に注意

315 Gala で摘発された企業は、業界内ではほんの少数派です。ユーザーのプライバシーを侵害するア...

Google が使用する 4 つのデータ指標モデル

この目的のために、市場で一般的なデータ モデルを見つけて整理し、分析することができます。主流のデータ...

1300億のパラメータを持つ中国初の大規模数学モデルMathGPTがリリースされました!複数のベンチマークがGPT-4を上回る

数学的 AI ビッグモデルはこの分野の将来を変える可能性があります。本日、中国初の兆スケール数学モデ...

2021 年のデジタル トランスフォーメーションの 10 大トレンド

2020 年に私たちがどうなるかは誰も予測できませんでした。過去 6 か月だけでも、過去 10 年間...

プログラマーの間でデータ構造やアルゴリズムに関する知識が一般的に不足していることについてどう思いますか?

多くのプログラマーの目には、データ構造やアルゴリズムなどは役に立たず、実際に使用されることもあまりな...

...

自動運転システムのテストに関する簡単な説明

1. 自動運転システムレベルテストの基本理論1.1 自動運転テストシナリオの構成1.1.1 フレーム...

2021 年の機械学習の 6 つのトレンド

機械学習は今日ではよく知られた革新的な技術となっています。ある調査によると、現在人々が使用しているデ...

機械学習から最も恩恵を受ける4つの業界

機械学習は、将来性が最も高く、業界に最大のメリットをもたらす AI の分野です。関連レポートによると...

...