畳み込みニューラルネットワークが分かりませんか?怖がらないでください、このかわいい写真を​​見ればわかりますよ!

畳み込みニューラルネットワークが分かりませんか?怖がらないでください、このかわいい写真を​​見ればわかりますよ!

この記事では、畳み込みニューラル ネットワーク (CNN) の基本原理を、関連する数学理論を省き、最も簡潔かつわかりやすい方法で説明します。

同時に、CNN ネットワークをゼロから構築するなどの問題に興味がある場合は、「Artificial Intelligence for Humans Volume 3: Deep Learning and Neural Networks」の第 10 章を読むことを著者は推奨しています。

さあ、CNNの旅を始めましょう——

ネットワーク構造

CNN モデルは通常、フィードフォワード ニューラル ネットワーク モデルに基づいて構築されるため、その構造を理解しておく必要があります。違いは、「非表示レイヤー」が次のレイヤーに置き換えられることです。

  • 畳み込み層
  • プーリングレイヤー

完全接続層(密層)

構造は次の図のようになります。

畳み込み

この段階では、入力画像はグリッドによってスキャンされ、ネットワークへの入力として渡されます。次に、ネットワークは入力画像に畳み込み層を適用し、3 つの画像を含む 3D キューブ構造に分割します。これら 3 つの画像フレームは、それぞれ元の画像の赤、緑、青の情報を表します。

次に、PhotoShop のフィルターを使用して特定の特徴を強調するのと同様に、画像に畳み込みフィルター (ニューロンとも呼ばれます) を適用します。たとえば、漫画「Doc And Mharti」では、Roberts クロス エッジ強調フィルターを使用した効果が次の図に示されています。

オリジナル画像

治療後

100 種類以上のフィルターを備えたニューラル ネットワークが複雑な特徴を選別する能力がいかに強力であるかは想像に難くなく、それが現実世界の物事を識別するのに大いに役立つでしょう。ニューラル ネットワークが画像に畳み込みフィルターを適用すると、特徴/活性化マップを取得できます。

特徴マップは、指定された領域内の特定のニューロンによってアクティブ化されます。たとえば、下の左側の画像にエッジ検出フィルターを追加すると、そのアクティブ化マップが右側の画像に表示されます。

これらの点は 0 の行を表します (これらの領域がエッジである可能性が高いことを示します)。 2 次元配列では、値「30」は、画像領域にエッジが存在する可能性が高いことを示します。

レイヤーをアクティブ化

活性化マップができたら、その中の活性化関数を使用できます。研究者の最初の関数である ReLU 活性化関数 (正規化線形ユニット) を例として使用してみましょう。しかし、シグモイド関数や双曲正接関数を使用すると最良のトレーニング結果が得られると信じている研究者もいますが、私はそうは思いません。

アクティベーション レイヤーを使用すると、システムに非線形性が導入され、入力と出力の一般性が向上します。 ReLU(x) 関数は、単純に max(0,x) またはアクティベーション マップ内の負の重みを返します。

プーリング層

次のベストプラクティスは通常、特徴マップにディーププーリング(またはその他のタイプのプーリング)を適用することです。プーリング層を適用する原理は、小さなグリッドで画像をスキャンし、各グリッド セルを、指定されたグリッド内の最適な値を含む単一のセルに置き換えることです。

これを実行する重要な理由の 1 つは、特定の特徴が入力の特定の領域にあることがわかれば、その特徴の正確な位置を無視してデータを一般化し、過剰適合を減らすことができることです。たとえば、トレーニングの精度が 99% に達したとしても、これまでに見たことのない新しいデータでテストすると、その精度は 50% にしかなりません。

出力層

***プーリング層の後は、完全に接続されたネットワークに渡される情報の一部である、残りのアクティベーション マップについて説明します。完全接続層が含まれており、前の層の各ニューロンの出力を完全接続層のニューロンに単純にマッピングし、出力にソフトマックス関数を適用します。これは、前述の ReLU 関数に似た活性化関数です。

画像を分類するためにニューラル ネットワークを使用するため、ここではソフトマックス関数を使用します。ソフトマックス出力は、合計が 1 になる確率のリストを返します。各確率は、特定の画像が特定の出力クラスに属する確率を表します。しかし、後で画像の予測や復元のタスクになると、線形活性化関数の方がうまく機能します。

これまでは、畳み込み層とプーリング層が 1 つずつという単純なケースのみを検討してきたことに注意してください。最高の精度を達成したい場合は、通常、複数の層を積み重ねる必要があります。各完全な反復の後、ネットワークを通じて計算された損失に基づいて重みが更新されます。

<<:  Ant Financialが機械学習ツールSQLFlowをオープンソース化、機械学習はSQLよりも簡単

>>:  AIがバリアフリー時代へ:手話認識・翻訳の応用が意味するものとは?

ブログ    
ブログ    
ブログ    

推薦する

自然災害の予測に関しては、AIはまだ大丈夫でしょうか?

古代から現代に至るまで、自然災害は人類に限りない損失をもたらしてきました。都市社会がますます発展する...

上場企業上位500社を調査し、人工知能の7つの主要トレンドをまとめました。

近年、人工知能技術の研究が継続的に進歩するにつれて、資本は熱い傾向を示し、さまざまな業界が人工知能に...

純粋なテキスト モデルは「視覚的な」表現をトレーニングします。 MITの最新研究:言語モデルはコードで絵を描くことができる

「本を読む」ことしかできない大規模な言語モデルは、現実世界の視覚的認識を備えているのでしょうか?文字...

...

「トランスフォーマー」は5年でクレイジーなCNNに取って代わりました!トランスフォーマーは人工知能を支配するのでしょうか?

AI業界では今や誰もが知る名前となったTransformerが、これほど短期間でなぜこれほど人気を...

機械学習の運用はクラウドコンピューティングの運用には適していない

クラウド コンピューティング サービス チームに機械学習機能を備えたシステムを提供することは間違いで...

AI ナンバープレート認識 ANPR テクノロジーは人類にどのようなメリットをもたらしますか?

調査によると、世界のANPRシステム市場は2021年から2023年の間に年間9.6%成長すると予想さ...

...

インターネットの理解からユーザーの理解へ、Google は今回何に賭けているのでしょうか?

Google I/O カンファレンスは予定通り開催されます。北京時間5月12日午前1時、Googl...

...

Google の覇権は崩壊するのか?支配から疑惑へ:20年間インターネットのトレンドを形作ってきたGoogle検索は謎に包まれている

Googleで最初に出てくるのは、スタンフォード大学の元学長ゲルハルト・カスパーの名前です。 199...

AI+CRMの啓示:人工知能は、アプリケーションシナリオに実装された場合にのみ、大きな可能性を発揮できます。

[51CTO.comより] 両会期中の政府活動報告に人工知能が盛り込まれた。万鋼科学技術部長は、中...

クラウド コンピューティングにおいて人工知能はどのような役割を果たすことができますか?

人工知能の台頭により、誰もがその将来に大きな期待を抱いています。クラウド コンピューティングに関する...

人工知能が人事を変える7つの方法

[[357616]] International Journal of Engineering an...

AI の透明性とは何ですか? また、なぜそれが必要なのですか?

AI テクノロジーを利用する組織はますます増えていますが、多くの企業はまだ AI テクノロジーの仕...