Ant Financialが機械学習ツールSQLFlowをオープンソース化、機械学習はSQLよりも簡単

Ant Financialが機械学習ツールSQLFlowをオープンソース化、機械学習はSQLよりも簡単

5月6日、アント・ファイナンシャルの副CTOである胡曦氏はオープンソースの機械学習ツールSQLFlowを正式に発表し、「今後3年間で、AI機能はすべての技術者の基本的な機能となるでしょう。SQLFlowをオープンソース化することで人工知能アプリケーションの技術的ハードルを下げ、技術者がSQLと同じくらい簡単にAIを呼び出せるようにしたいと考えています。」と述べた。

現在、SQLFlow は GitHub で 1,636 個のスターと 236 個のフォークを獲得しています。 (GitHub アドレス: https://github.com/sql-machine-learning/sqlflow)

SQLFlow の目標は、SQL エンジンと AI エンジンを接続し、ユーザーがわずか数行の SQL コードでアプリケーションまたは製品全体の背後にあるデータ フローと AI 構造を記述できるようにすることです。関連する SQL エンジンには、MySQL、Oracle、Hive、SparkSQL、Flink など、SQL またはその派生語を使用してデータを記述したり、データに対する操作を記述したりすることをサポートするシステムが含まれます。ここで言う AI エンジンには、TensorFlow や PyTorch などのディープラーニング システムのほか、XGBoost、LibLinear、LibSVM などの従来の機械学習システムも含まれます。

SQLから機械学習へ

SQLFlow は、拡張構文を持つ SQL プログラムを、submitter と呼ばれるプログラムに変換して実行するトランスレータとして考えることができます。 SQLFlow は、さまざまな SQL エンジンを同じエンジンに抽象化する抽象化レイヤーを提供します。 SQLFlow は、さまざまな変換メカニズムをプラグインして、さまざまな AI エンジンに基づく送信プログラムを取得できる拡張可能なメカニズムも提供します。

SQLFlow が SQL 構文を拡張する目的は単純です。SELECT ステートメントの後に拡張構文を持つ TRAIN 句を追加することで、AI モデルのトレーニングを実装できます。あるいは、PREDICT 句を追加して、既存のモデルを使用して予測を行うこともできます。この設計により、データ アナリストの学習パスが大幅に簡素化されます。

さらに、SQLFlow は、データの特性に基づいてデータを自動的に機能に変換する方法を推測するために、さまざまな送信者翻訳プラグインで使用できるいくつかの基本関数も提供します。この方法では、ユーザーは TRAIN 句で変換を記述する必要がありません。

上記の設計意図は、SQLFlow のオープン ソース コードに反映されています。もちろん、SQLFlow の開発期間はまだ比較的短く、十分に詳細化されていない領域がまだたくさんあります。 Ant Financial のオープンソースのもう 1 つの目的は、さまざまな SQL エンジン チームや AI チームと連携して、データと AI の架け橋を構築することです。

以下は、サンプル データ Iris.train を使用して Tensorflow DNNClassifer モデルをトレーニングし、トレーニング済みのモデルを使用して予測を実行する例です。 SQL を使用してエレガントな ML コードを記述すると、いかにクールであるかがわかります。

  1. sqlflow> SELECT *
  2. iris.trainより
  3. DNN分類器のトレーニング
  4. n_classes = 3、hidden_​​units = [10, 20]の場合
  5. がく片の長さ、がく片の幅、花弁の長さ、花弁の幅
  6. LABELクラス
  7. sqlflow_models.my_dnn_modelにコピーします
  8.  
  9. ...
  10. トレーニングセットの精度: 0.96721
  11. トレーニング完了
  1. sqlflow> SELECT *
  2. iris.testより
  3. 予測 iris.predict.class
  4. sqlflow_models.my_dnn_model を使用します。
  5.  
  6. ...
  7. 予測完了。予測テーブル: iris.predict
  8. ...
  9. トレーニングセットの精度: 0.96721
  10. トレーニング完了

<<:  人材獲得競争で大学に残ることを選んだAI研究者

>>:  畳み込みニューラルネットワークが分かりませんか?怖がらないでください、このかわいい写真を​​見ればわかりますよ!

ブログ    
ブログ    
ブログ    

推薦する

機械学習アルゴリズムと機械学習モデルの開発方法について知っておくべきことは何ですか?

[[201235]]概念とそれがビジネス目標に与える影響を学ぶことは非常に重要です。アルゴリズムの...

人工知能の時代に人権と民主主義をどう守るか

人工知能 (AI) システムは近年急速に普及しており、特に 2023 年には大規模言語モデル (LL...

USTCとJD.comの最新の成果:AIが本物の人間のように話し、リアルなジェスチャーを披露

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

RPAテクノロジーが製造業の未来をどのように変えるか

RPA コンサルティング サービスは、製造業者がソフトウェア ロボットを使用してさまざまな反復的なル...

ファーウェイクラウドは、2021年世界インターネット会議で人工知能イノベーションの3つの要素を提案し、新たな産業エコシステムを構築

本日、2021年世界インターネット大会烏鎮サミットにおいて、ファーウェイ上級副社長、ファーウェイクラ...

...

...

人工知能は議論の的になっています。それは人類にとって利益となるのでしょうか、それとも脅威となるのでしょうか?

人工知能はここ2年で急速に発展し、狂気のレベルにまで達しました。例えば、ロボットは人間社会の「市民」...

...

...

...

...

人工知能は「絶滅危惧」言語の保護に大きな役割を果たすかもしれません!

国連の統計によると、私たちが住む地球上には西暦8世紀以降、2万以上の人間の言語が出現しましたが、今日...

MITの新しい研究により、熱太陽光発電の効率が40%に向上

この熱光起電力セルは、太陽電池パネルに似ており、白熱熱源から高エネルギー光子を受動的に捕捉し、電気に...

1 つの記事で NLP 実装の難しさを理解する

[51CTO.comからのオリジナル記事] 近年、自然言語処理技術は徐々に最も広く使用されている人工...