今後数年間の人工知能研究が避けられない3つの重要な問題

今後数年間の人工知能研究が避けられない3つの重要な問題

現在、人工知能は産業のアップグレードを積極的に推進しており、製品の品質とコア能力を向上させています。しかし、AI が真に普及するためには、限られた電力と熱エネルギーで端末デバイス上で実行できる必要があります。

[[270718]]

J. Gold Associates のテクノロジーアナリスト兼創設者兼社長であるジャック・ゴールド氏は次のように述べています。

「AIは発展し始めているが、まだ停滞期には程遠く、ピークには程遠い。」

実際のところ、現時点では、人工知能がもたらすものは有用ではあるものの、それは氷山の一角にすぎません。ある意味、カスタマイズされた機能しか実現できず、最適化の余地がまだ大きく、人々が本当にやりたいことをカバーするにはまだ遠いです。

さまざまな業界で AI の使用事例が増えており、デバイスとそのコア機能の面でユーザー エクスペリエンスを向上させる必要性が高まっていますが、「AI を活用した未来」が実現するにはしばらく時間がかかるでしょう。

3つの重要な研究課題

ゴード氏はこう語った。

「AIでは、自然言語処理(NLP)やコンピュータービジョンなど、さまざまなことが行われていますが、それをすべて実現するための鍵は、コスト効率が高く、定義が容易で、エンドユーザーに展開できるソリューションをいかに実現するかだと考えています。」

同氏は、今後数年間の人工知能の発展モデルと方向性は、3つの主要な研究内容に左右されると述べた。

***、人工知能システムを構築するための最適なプラットフォームまたはフレームワークを開発する

Google、Amazon、Microsoft などの企業がそれぞれ異なることを行っている中、1 つの差し迫った疑問が残ります。どうすればこれらすべてをまとめられるのでしょうか?

例えば:

14 種類の異なるアプリケーション領域向けにシステムを構築する必要がないように、Windows と Linux を同等にするにはどうすればよいでしょうか。この質問への答えは、今後 5 年間の人工知能の開発モデルと方向性を決定する主な要因の 1 つになるでしょう。

次に、コストを削減するためにハードウェア システムを最適化するにはどうすればよいでしょうか。

たとえば、トレーニング システムの多くは、非常にハイエンドで、非常に高価で、非常に電力を消費するグラフィック プロセッシング ユニット (GPU) 上に構築されています。しかし、どのようなハードウェア プラットフォームが AI をより効果的、経済的、かつ簡単に実行できるのでしょうか?

フレームワークとハードウェアは切り離せないものです。フレームワーク上で実行される操作とハードウェア上で実行される操作は相互に影響を及ぼします。

3番目に、半自動ツールを構築する

これが最も重要なポイントです。現在、人工知能システムを構築するには、ほとんどの場合、かなりのデータ研究投資が必要であり、システムを構築してエンタープライズ アプリケーションに展開するには、有力なデータ サイエンティストやエンジニアが必要です。

「AI をより幅広いユーザー ベースに拡張するには、半自動化ツールが必要ですが、それには時間がかかります。一夜にして実現できるものではありません」とゴールド氏は説明します。「これは、ワード プロセッサや PowerPoint と同等のもので、5,000 人のデータ アナリストを雇わなくても、データをユーザー レベルにまで落とし込むことができます。もちろん、そんなことは起こりそうにありません。」

AI研究の障害

ほとんどの人工知能は、人間の心と、人間が情報や世界とどのように相互作用するかをモデル化しています。では、どの程度までシミュレートできるのでしょうか。ニューラル ネットワークは人間の脳に基づいており、過去 70 年間で人間の脳の働きについてさらに詳しく知るようになり、それが人工知能技術の発展につながりました。

したがって、主なハードルは、人体と神経系がどのように相互作用するかを実際に理解し、それをコンピューターでモデル化する方法を理解することです。

ゴード氏はこう語った。

「最も適切なアルゴリズムを構築し、それをさまざまなハードウェア システムやソフトウェア システム向けに最適化する方法は、長期的な課題です。多くの人がこの問題に取り組んでいますが、短期間で解決できるものではありません。」

ゴールド氏は、すべての大手チップメーカーが自社のチップにニューラルネットワークプロセッサ(NNP)を追加しており、現在はそれを最適化する方法について取り組んでいると述べた。

これについても多くの議論があり、トレーニング側に焦点を当てている企業もあれば、推論側に焦点を当てている企業もあり、これらはアーキテクチャを最適化する 2 つの方法です。最終的には両方が必要だとゴールド氏は語った。

同氏は、3~5年後にはすべての携帯電話にAIチップが搭載されるようになるだろうと付け加えた。

パソコンをお持ちであれば、CPU 内のチップであろうと補助チップであろうと、そこには AI が組み込まれています。

「そう遠くない将来、ほとんどすべてのものに何らかの形の AI が搭載されるでしょう」とゴールド氏は言う。「CPU 戦争、GPU 戦争、メモリ戦争がありましたが、今は NNP 戦争です!」

<<:  エッジコンピューティング時代の到来は AI にどのような影響を与えるのでしょうか?

>>:  グラフ データの分野における Oracle Fermat テクノロジーの利点は何ですか?

ブログ    

推薦する

...

企業がチャットボットの自然言語処理について学ぶべき理由は何ですか?

自然言語処理 (NLP) により、チャットボットは会話のメッセージを理解してそれに応じて応答できるよ...

こんにちは、音声認識について学びましょう!

[51CTO.com からのオリジナル記事] 音声認識は自動音声認識とも呼ばれ、人間の音声に含まれ...

MIT の中国人博士共同執筆者: 確率プログラムモデリングを使用して世界モデルを解明!

言語は思考にどのように影響しますか?人間は言語からどのように意味を引き出すのでしょうか?これら 2 ...

インタビュー必読: 4 つの典型的な電流制限アルゴリズムの説明

[[402482]]最近、当社の業務システムは、トークン バケット アルゴリズムに基づいて実装された...

2024 年のテクノロジー トレンド - 企業は今から準備を始める必要があります。

2023 年の主流のテクノロジートレンドが人工知能、より具体的には生成 AI に重点を置くことは間...

LoraHubはレゴのように組み立てることができ、LoRAのモジュール特性を探索することができます。

低ランク適応 (LoRA) は、基本的な LLM が特定のタスクに効率的に適応できるようにする、一般...

...

マイクロソフトの小型モデルが大型モデルに勝利:27億のパラメータ、携帯電話で実行可能

先月、マイクロソフトのCEOであるサティア・ナデラ氏はIgniteカンファレンスで、自社開発の小型モ...

人間を超えた最初の専門家! OpenAIが混乱に陥る中、Googleのマルチモーダル大規模モデルGeminiがそれを打ち負かす

OpenAIが混乱に陥っている間、Googleは「全員を殺す」準備をしている。ちょうど昨夜、Goog...

弁護士の仕事もAIによって奪われるのでしょうか?ユーザー: 他に何ができますか?

モバイルインターネット時代の到来により、AIは前例のない成果を達成し、人々の生活のあらゆる側面に入り...

人工知能に対する2つのアプローチの戦い

[[248047]] (AIの2つのルート)ホフスタッターは1995年に予測した。 (人工知能におい...

よく使われる 3 つの C# ソート アルゴリズム

C# アルゴリズムは、C# 言語学習の重要な部分です。C# ソート アルゴリズムは、言語の基礎とデー...