エッジコンピューティング時代の到来は AI にどのような影響を与えるのでしょうか?

エッジコンピューティング時代の到来は AI にどのような影響を与えるのでしょうか?

[[270736]]

近年、人工知能はテクノロジー界で注目されている分野です。中国では、Megvii Technology、SenseTime、Jialian Technology Video++、Yitu Technologyなどの優れたスタートアップ企業が近年誕生しています。しかし、5G、人工知能、モノのインターネットの登場により、従来のクラウドコンピューティング技術では、人工知能端末の「大規模接続、低遅延、大規模帯域幅」の要件を満たすことができなくなりました。

クラウド コンピューティングの機能はますます強力になっていますが、従来のクラウド コンピューティングでは、個人のプライバシーに関わる大量のデータを扱う場合、IoT ベースのアプリケーション サービス プログラムを効率的にサポートすることはできません。エッジ ビッグ データ処理の時代におけるエッジ クラウド コンピューティングは、これらの問題を非常にうまく解決できます。

エッジコンピューティングとは何ですか?

エッジ クラウドは、クラウド コンピューティング テクノロジーの中核とエッジ コンピューティングの機能に基づいてエッジ インフラストラクチャ上に構築されたクラウド コンピューティング プラットフォームです。エッジに包括的なコンピューティング、ネットワーキング、ストレージ、セキュリティ機能を備えた弾力性のあるクラウドプラットフォームが形成され、中央のクラウドとIoT端末で「クラウド-エッジ-エンド連携」のエンドツーエンドの技術アーキテクチャが形成されます。ネットワーク転送、ストレージ、コンピューティング、インテリジェントデータ分析などのタスクをエッジに配置して処理することで、応答遅延が短縮され、クラウドの負荷が軽減され、帯域幅コストが削減され、フルネットワークスケジューリングやコンピューティングパワー配分などのクラウドサービスが提供されます。

簡単に言えば、エッジ コンピューティングとは、オブジェクトまたはデータのソースに近いネットワークのエッジでネットワーク、コンピューティング、ストレージ、およびアプリケーション処理機能を統合し、近くでインテリジェントなサービスを提供する分散プラットフォームを指します。エッジ コンピューティングは、クラウド コンピューティングの逆の操作として理解できます。クラウド コンピューティングは、エッジまたはデスクトップからのコンピューティング機能とストレージ機能の集中に重点を置いていますが、エッジ コンピューティングは、そのようなコンピューティング機能とストレージ機能をエッジに戻します。

エッジコンピューティングの理由

エッジコンピューティングが登場した主な理由は、クラウドコンピューティングのサービスが不十分であることです。クラウドコンピューティングは主に集中管理方式を採用しており、クラウドサービスはより高い経済的利益を生み出すことができます。Internet of Everythingの文脈では、アプリケーションサービスには低レイテンシ、高い信頼性、データセキュリティが求められますが、従来のクラウドコンピューティングではこれらの要件を満たすことができません。

まず、モノのインターネット環境では、エッジデバイスが大量のリアルタイムデータを生成し、クラウドコンピューティングのパフォーマンスが徐々にボトルネックになりつつあります。IDCの予測によると、2020年までに世界のデータ総量は40ZBを超えると予想されています。エッジデバイスからのデータ量が増加するにつれて、ネットワーク帯域幅が徐々にクラウドコンピューティングのもう1つのボトルネックになりつつあります。第二に、ユーザーが電子ショッピングサイト、検索エンジン、ソーシャルネットワークなどを使用すると、ユーザーのプライバシーデータを含むプライバシーデータがクラウドセンターにアップロードされます。ビデオデータがクラウドデータセンターに直接アップロードされると、ビデオデータの送信は帯域幅リソースを占有するだけでなく、ユーザーのプライバシーデータが漏洩するリスクも高まります。エッジコンピューティングモデルは、この種の機密データに対してより優れたプライバシー保護メカニズムを提供します。 ***、クラウドデータセンターのエネルギー消費問題に関しては、クラウドコンピューティングセンターで実行されるユーザーアプリケーションがますます増えるにつれて、大規模データセンターのエネルギー消費需要は将来的に満たすことが難しくなります。このエネルギー消費問題を解決するために、エッジコンピューティングモデルは、元のクラウドデータセンターで実行されている一部のコンピューティングタスクを分解し、分解されたコンピューティングタスクをエッジノードに移行して処理することを提案し、クラウドコンピューティングセンターのコンピューティング負荷を軽減し、エネルギー消費を削減するという目的を達成します。

エッジコンピューティングの応用シナリオ

エッジ コンピューティングのアプリケーション シナリオは、カバレッジに基づいて、完全なネットワーク カバレッジとローカル カバレッジの 2 つのカテゴリに分けられます。完全なネットワーク カバレッジ アプリケーションの基本要件は、地域レベルとオペレータ ネットワーク レベルの両方でエッジ ノードのカバレッジからローカル コンピューティング (CDN、ライブ ビデオ、エッジ ダイヤリング/モニタリングなど) を確保すること、または十分な数のノードに基づいてネットワーク リンクを最適化することです。

ローカル カバレッジ アプリケーションの中核となる要件は、エッジ ノードのローカリゼーションです。つまり、エッジ ノードのアクセス距離は十分近い (<30 キロメートル) 必要があり、レイテンシは十分に低い (<5 ミリ秒) 必要があります。これにより、新しい小売、医療、その他の業界における監視データのクラウド移行など、ローカライズされたサービスのクラウド移行のニーズをサポートできます。このようなアプリケーションの大きな帯域幅要件は、レイテンシやコストの最適化など、エッジ クラウド コンピューティングのコアな利点を最もよく反映するシナリオです。

ライブビデオのメディア ストリームは最も近いエッジ ノードにプッシュされ、そこで直接トランスコードされます。トランスコードされたメディア ストリームは CDN エッジ ノードに配信され、ユーザーがアクセスするとコンテンツが近くで返されます。エッジ ノードに基づくサービス、ライブ ストリームのアップストリームおよびダウンストリーム コンテンツ プッシュ、およびトランスコーディング処理をセンターに戻す必要がなくなり、ビジネスの遅延が大幅に短縮され、インタラクティブなエクスペリエンスが向上します。同時に、エッジ処理アーキテクチャにより、帯域幅コストも大幅に節約されます。

まとめ:

これまで、AIはデータ分析やアルゴリズム操作を実行するために強力なクラウドコンピューティング機能に頼る必要がありました。テクノロジーが成熟し、新しいアプリケーションが登場するにつれて、ビジネスのデジタル化の概念が徐々に人々の心に浸透してきました。チップの機能は向上し続け、エッジコンピューティングプラットフォームは成熟し、AIに予備的なデータのスクリーニングと分析、デバイスのリアルタイム応答などを支援する強力な機能を与え、産業分野、スマートシティ、ビデオ認識のサービスをさらに向上させることができます。エッジクラウドコンピューティング技術は、人工知能やモノのインターネットなどの分野で重要な要素となり、さらに発展し、潜在的な顧客やシナリオが次々と生まれていきます。エッジ クラウド コンピューティングの適用シナリオが増えるにつれて、ユーザーのニーズの変化が今後の注目の的になるでしょう。エッジ クラウド コンピューティングがうまく機能すれば、従来のクラウド コンピューティングよりもはるかに低いコストでプロジェクトを実装できるようになります。

<<:  アリババが自然言語理解の世界記録を更新、AIの常識的推論は人間のそれに近づいている

>>:  今後数年間の人工知能研究が避けられない3つの重要な問題

ブログ    
ブログ    

推薦する

米軍は市街戦環境向けの人工知能システムを開発中

米陸軍研究所は、都市環境における兵士の状況認識力と戦闘能力を向上させるために、認知・神経工学共同技術...

...

人工知能の利点をどう生かすか

企業で人工知能が応用され、開発されるにつれて、ビジネスリーダーは市場競争力を向上させるためにクラウド...

GPT ストアは来週開始され、OpenAI アプリケーションの爆発的な増加が目前に迫っています。最も完全なGPTビルダーユーザーガイドはここにあります

これから起こることは、やがて起こるでしょう! OpenAIが開発者会議で正式発表した「GPTストア」...

最新の出来事を常に把握しましょう! Soraモデルテキスト生成ビデオをサポートするWebクライアント

みなさんこんにちは。JavaプログラマーのChenです。最近、Open AIが再び人気を集めており、...

...

...

人工知能翻訳は、障害なく外国人と恋に落ちるのに役立ちます

AI 音声翻訳の分野では、ノイズは対処しなければならない主要な課題の 1 つです。この装置は研究室や...

...

アダムとイブ: ディープラーニングの問題を解決するための強力なツール

[[242433]] [51CTO.com クイック翻訳] 近年、ディープラーニングの波がインターネ...

ベンチャー投資における機械学習の活用方法

過去 20 年間にわたり、Veronica Wu は多くの大きな技術的変化の始まりを目撃してきました...

AIチップ市場に必要なのは火か氷か?

最近、AIチップ市場は明らかに冷え込んでいます。チップ市場のリーダーであるNvidiaが先日発表した...

敵対的サンプルとディープニューラルネットワークの学習

概要過去 6 か月間で、人工知能の分野は科学技術分野で最も頻繁に言及される用語の 1 つになりました...

データ構造とアルゴリズム - グラフ理論: 連結成分と強連結成分の検出

無向グラフの連結成分を見つける深さ優先探索を使用すると、グラフのすべての接続コンポーネントを簡単に見...

...