Githubのオブジェクトカウントアルゴリズム

Githubのオブジェクトカウントアルゴリズム

Github を使用しているときに、次のプロンプトを見たことがありますか?

  1. $ gitクローンhttps://github.com/torvalds/linux  
  2. 「Linux」にクローンしています...
  3. リモート: オブジェクトをカウントしています: 4350078 、完了。
  4. リモート: オブジェクトの圧縮中: 100 % ( 4677 / 4677 )、完了。
  5. 受信オブジェクト: 4 % ( 191786 / 4350078 )、 78.19 MiB | 8.70 MiB/s

このプロンプトは、リモート コード リポジトリにクローン化する必要があるオブジェクトが合計 4350078 個あることを示しています。

これは「オブジェクトのカウント」と呼ばれます。Github は、クローン化する必要があるオブジェクトの総数をリアルタイムで計算する必要があります。

このプロセスは非常に遅いです。Github によると、Linux カーネルのような巨大なライブラリをインベントリするには 8 分かかります。つまり、 git cloneコマンドを発行した後、実際のデータ転送が開始されるまで 8 分間待機することになります。もちろんこれは耐えられないことだ。 Github チームはこの問題を解決しようと努めてきました。

その後、ついに新しいアルゴリズムが発見され、今では 1 回のカウントに 3 ミリ秒しかかかりません。

このアルゴリズムを理解するには、まず Git オブジェクトが何であるかを知っておく必要があります。簡単に言えば、オブジェクトはファイルであり、最も重要なオブジェクトの種類は 3 つあります。

  • スナップショットオブジェクト(コミット)

  • ディレクトリオブジェクト

  • ファイルオブジェクト

コードを送信するたびに、対応する現在の「ディレクトリ オブジェクト」の名前を含むコミット オブジェクトが生成されます。 「ディレクトリ オブジェクト」には、コード ルート ディレクトリに含まれるサブディレクトリとファイル情報が格納されます。各サブディレクトリは別の「ディレクトリ オブジェクト」であり、各ファイルは特定のファイル コンテンツを含む「ファイル オブジェクト」です。

したがって、「オブジェクトをカウントする」とは、さまざまなコミット、ディレクトリ、ファイルなどをカウントすることを意味します。 git clonegit fetch両方の操作では、どのオブジェクト ファイルがダウンロードされるかを知る必要があるため、オブジェクト インベントリが必要です。

オブジェクトをカウントするための元のアルゴリズムは次のとおりです。

  1. すべてのローカルブランチを一覧表示***コミット

  2. すべてのリモートブランチを一覧表示***コミット

  3. 2つを比較し、違いがあればブランチが変更されたことを意味します。

  4. 変更されたコミットごとに、変更されたサブディレクトリとファイルを確認します。

  5. 現在のコミットの親ノードまでトレースバックし、ローカルとリモートの履歴が一致するまで手順 4 を繰り返します。

  6. 変更が必要なすべてのオブジェクトを合計します

上記のプロセスは、「オブジェクト カウント」がファイル トラバーサル アルゴリズムであることを示しています。変更されたオブジェクトは 1 つずつカウントされるため、ファイル読み取り操作の回数が多くなります。大規模なコードベースでは、このプロセスは非常に遅くなります。

Github チームが考案した新しいアルゴリズムは、ビットマップ インデックスを作成すること、つまりコミットごとにバイナリ値を生成することです。

ローカル Github リポジトリの.git/objects/pack/ディレクトリを開くと、ビットマップであるインデックス ファイルとデータ ファイルが表示されます。簡単に言うと、これら 2 つのファイルは現在のコード ベース内のすべてのオブジェクトをインデックス化し、バイナリ値を使用してこれらのオブジェクトを表します。このバイナリ値には、オブジェクトの数と同じ数のビットが含まれます。 n 番目のビットは、データ ファイル内の n 番目のオブジェクトを表します。

各コミットには、現在のスナップショットに含まれるすべてのオブジェクトを表す対応するバイナリ値があります。これらのオブジェクトの対応するバイナリ ビットはすべて 1 で、他のバイナリ ビットはすべて 0 です。

これを実行する利点は、コミット オブジェクトを読み取る必要がないことです。現在のコミットに含まれるノードを知るには、バイナリ値を読み取るだけで済みます。さらに良いことに、2 つのバイナリ値に対して XOR 演算を実行するだけで、どのビット (つまりどのオブジェクト) が変更されたかがわかります。さらに、新しいオブジェクトは常に既存のバイナリ ビットの末尾に追加されるため、現在のコミットに前のコミットよりも多くのオブジェクトが含まれているかどうかを確認するには、追加ビットを読み取るだけで済みます。

このように、「オブジェクトのカウント」はバイナリ値の比較操作となるため、速度が非常に速くなります。詳しい説明については、公式ドキュメント「ビットマップの説明」および「ビットマップのフォーマット」を参照してください。

現在、このアルゴリズムは Github の実稼働環境に導入されており、ユーザーはオブジェクトのカウントを待つ必要がなくなりました。さらに、Github チームはこれを Git に統合しました。つまり、今後はすべての Git 実装で Bitmap 関数を使用できるようになり、将来的にはより興味深い使用法が確実に生まれるでしょう。

<<:  人工知能アルゴリズムを採用したGoogle検索は恐ろしい

>>:  教師なし学習アルゴリズム: 異常検出

ブログ    
ブログ    
ブログ    
ブログ    

推薦する

...

人工知能やモノのインターネットなどの技術は、気候変動のリスクを軽減する上で大きな役割を果たすことができる。

人工知能は、既存の技術と組織活動の効率を向上させることを目的としています。しかし、気候変動や、グリー...

...

産業用ロボットとは何ですか?

産業用ロボットとは何ですか?工業生産で使用される産業用ロボットには、溶接ロボット、研削・研磨ロボット...

30秒で署名、上海の核酸採取ロボットが登場!

COVID-19の流行が続き、核酸検査が広範囲で徐々に常態化している中、複数の組織が核酸検査用ロボ...

...

IoTとAIがコロナウイルスの流行中に企業の事業再開をどのように可能にしているか

[[333668]]数か月に及ぶ極度の不確実性、経済の閉鎖、孤立の後、ようやくゆっくりと経済が機能し...

データ構造とアルゴリズム: 最小全域木、数秒で理解できます!

[[426679]]序文データ構造とアルゴリズムのグラフ理論において、最小全域木アルゴリズムは、比...

...

...

ビジネスリーダーがLLMを活用して新たな機会を創出できる5つの方法

一般的に、AIGC とは、人間が作成したコンテンツに非常によく似た画像、音楽、テキストなどのコンテン...

アルトマンの巨大な AI 帝国を深く探ります。核融合プラントから不死技術センターまで、その規模は驚異的です。

制御された核融合から AGI、そしてチップ業界全体の再編まで、アルトマン氏の将来の AI 展望は、も...

...

ロボット工学、自動化、AIでイノベーションを加速

デジタル変革の結果、テクノロジーは長年にわたってどのように変化してきましたか?アクセンチュアが第 2...