サイズはたったの1MB!超軽量顔認識モデルがGithubで人気

サイズはたったの1MB!超軽量顔認識モデルがGithubで人気

最近、ユーザー Linzaer が、エッジ コンピューティング デバイス、モバイル デバイス、PC に適した超軽量のユニバーサル顔検出モデルを Github でオープンソース化しました。このモデル ファイルのサイズはわずか 1 MB で、オープンソース化されるとすぐに Github のトレンド リストのトップに躍り出ました。

わずか数日で、Github で 2.1K のスターと 398 のフォークを獲得しました (Github アドレス: https://github.com/Linzaer/Ultra-Light-Fast-Generic-Face-Detector-1MB)

Linzaer氏によると、このモデルはエッジコンピューティングデバイスや低コンピューティングデバイス(ARM推論を使用するなど)向けに設計されており、ARMなどの低コンピューティングデバイスでの一般的なシナリオでリアルタイムの顔検出推論を実行できるほか、モバイル端末やPCにも適用できるという。

主な機能は次のとおりです。

  • モデルサイズに関しては、デフォルトの FP32 精度 (.pth) ファイルサイズは 1.04 ~ 1.1 MB で、int8 量子化後の推論フレームワークのサイズは約 300 KB です。
  • モデル計算に関しては、入力解像度は 320x240、スループットは約 90~109 MFlops です。
  • このモデルには、バージョン スリム (合理化されたバックボーンによりわずかに高速化) とバージョン RFB (より高い精度のために修正された RFB モジュールが追加された) の 2 つのバージョンがあります。
  • さまざまなアプリケーション シナリオでより適切に動作するように、320 x 240 と 640 x 480 の異なる入力解像度でワイドフェイスを使用してトレーニングされた事前トレーニング済みモデルが提供されます。
  • 移植と推論を容易にするために onnx エクスポートをサポートします。

これまでテストされた通常の動作環境は次のとおりです。

  • Ubuntu 16.04、Ubuntu 18.04、Windows 10 (推論)
  • Python 3.6
  • パイトーチ 1.2
  • CUDA10.0 + CUDNN7.6

精度、速度、モデルサイズの比較

トレーニング セットは、Retinaface によって提供されるクリーンな wideface ラベルと wideface データセットを使用して生成され、VOC トレーニング セットが生成されます。

ワイドフェイステスト

WIDER FACE テスト セットでのテスト精度 (単一スケールの入力解像度: 320*240 または最大辺長 320 に比例してスケーリング)

WIDER FACE テスト セットでのテスト精度 (単一スケールの入力解像度: VGA 640*480 または最大辺長 640 に比例してスケーリング)

端末機器推論速度

Raspberry Pi 4B MNN推論テスト時間(単位:ms)(ARM/A72x4/1.5GHz/入力解像度:320x240/int8量子化)

モデルサイズの比較

画像効果は以下のとおりです。

<<:  AI は鉱業をどのように改善できるのでしょうか?

>>:  産業用ロボットを選択するための 9 つの主要なパラメータをご存知ですか?

ブログ    
ブログ    
ブログ    

推薦する

...

自動運転車は未来の社会で老後の暮らしをどう変えるのか?

フロリダ州中部にある、約12万5000人の住民を抱えるザ・ビレッジの退職者コミュニティには、約750...

オープンAI音声アシスタントMycroftでプライバシーを確​​保

[[258822]] [51CTO.com クイック翻訳] 音声アシスト技術は非常に人気があり、すで...

ニューラルネットワーク技術の進化について

ニューラル ネットワークとディープラーニング技術は、今日の高度なインテリジェント アプリケーションの...

...

PenFedは人工知能を活用して高度なパーソナライゼーションを実現

米国第2位の信用組合であるPenFedは、人工知能を活用して顧客とのやり取りの方法を変えようとしてい...

携帯電話が1秒で3Dホログラムを生成する、MITチームの新しい研究

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

...

AIストレージアーキテクチャの構築方法

今日、データの処理と保存に関する懸念が高まっています。生成されるデータの量、データが作成される場所、...

大規模言語モデルとベクトルデータベースに基づくニュース推奨システムの開発

翻訳者|朱 仙中レビュー | Chonglou近年、 ChatGPTやBardなどの生成AIツールの...

...

OpenAIとAppleの分岐点、アルトマンとジョブズが排除された日

何の警告もなく、OpenAIのCEOサム・アルトマンは解雇された。一つの石が千の波紋を呼ぶ。ウルトラ...

システムと機械学習を接続するための MLOps の課題は何ですか?この記事は明らかにしている

[[418732]]機械学習は、人々がデータを利用し、データとやり取りする方法に革命をもたらし、ビジ...