Google が 17 分野を網羅し 18,000 の注釈を付した大規模な対話コーパスを公開

Google が 17 分野を網羅し 18,000 の注釈を付した大規模な対話コーパスを公開

Google アシスタントのような AI アシスタントは、追加データや再トレーニングを必要とせずに、新しいサービスをより適切にサポートするにはどうすればよいでしょうか?

これは、ドメイン固有のパラメータを使用せずにサービス間でモデルを使用する方法を紹介した最近の研究で、Google の研究者が答えようとした質問です。

その一環として、研究チームは、タスク指向の対話コーパスとして公開されているものとしては最大の規模を誇るコーパス、スキーマガイド付き対話 (SGD) コーパスをリリースしました。

[[280742]]

「今日のバーチャルアシスタントは、フライトの検索、近くのイベントや映画の検索、予約、ウェブからの情報の取得など、ユーザーがさまざまなタスクを実行するのに役立ちます」と、ソフトウェアエンジニアのAbhinav Rastogi氏とGoogle ResearchのエンジニアリングリーダーPranav Khaitan氏はブログ投稿に書いています。

「驚異的な進歩にもかかわらず、最先端のモデルでは適応性の課題が見落とされがちです。これは、仮想アシスタントが直面する規模と複雑さに見合う適切なデータセットが不足していることが一因です。」

このため、 SGD には、銀行業務やイベントからメディア、カレンダー、旅行、天気まで、17 のドメインのサービスとのやり取りを含む、人々と仮想アシスタント間の 18,000 件を超える注釈付き会話が含まれています。

ほとんどのドメインでは、データセットには複数の異なる API が含まれており、その多くは機能が重複していますが、さまざまなインターフェースが典型的な現実世界のシナリオを反映しています。評価セットにはトレーニング セットに含まれていないサービスが含まれており、主に API の変更や新しい API の追加に対するモデルの堅牢性を定量化するために使用されます。

前述のパターン ガイド アプローチでは、各サービスまたは API の自然言語記述とそれに関連する属性を活用して分散セマンティック表現を学習します。これは、対話システムへの追加入力として使用され、その後、単一のモデルとして実装されます。

研究チームによると、この統合モデルはGoogleのオープンソース会話状態追跡モデルの中核をなすもので、異なるサービスにおける類似概念間の共通知識表現を促進し、トレーニングデータにはなかった新しいサービスでの動作を可能にするという。

「このデータセットは、大規模な会話モデルを構築するための優れたベンチマークとなるだろうと信じている」とラストギ氏とカイタン氏は書いている。 「研究コミュニティがこれを会話型テクノロジーの進歩のために革新的な方法で活用してくれることに興奮し、期待しています。」

新しいデータセットとモデルのリリースは、Google の Coached Conversational Preference Elicitation (CCPE) と、2 人の間の 1 対 1 の会話のデータセットである Taskmaster-1 のオープンソース化に続くものです。 (前者には、映画の好みについての人々との会話が 500 件、合計 10,000 件、合計 12,000 件の会話が含まれていました。)

Google はこれを、人間レベルのパフォーマンスを実現できる自然言語システムのモデリングに向けた一歩だと説明しています。

<<:  顔認証決済の登場:「決済戦争」の次なる激戦点となるか?

>>:  AI ソフトウェアは教育分野にどのように役立つのでしょうか?

ブログ    
ブログ    
ブログ    

推薦する

2020 年のディープラーニング フレームワークの簡単な比較

ご存知のとおり、機械学習フレームワークの分野では、PyTorch と TensorFlow がそれぞ...

人工知能の最初のグループが解雇された

全世界を置き換えると叫んだ人工知能は、ついに失業という苦境に陥った。スウェーデンのオンライン銀行であ...

有名人のリアルタイムディープフェイク!名前を入力して数秒で顔を変える

家に座って、数秒でマスクに変身しましょう。見てください、この男はコンピューターの前に座っています。最...

...

AIトレーニングの福音: 合成データについて

今日、AI テクノロジーは克服するのが難しいいくつかの主要な課題に直面しています。正確な結果を提供す...

機械学習の運用はサイバーセキュリティに革命をもたらす可能性がある

機械学習運用 (MLOps) とは、運用環境での機械学習モデルの展開、管理、監視を簡素化するために使...

MITとHKUは、Transformerを超える精度を持つ物理モデルに基づく視覚推論フレームワークを提案

[[437809]]動的視覚推論、特にオブジェクト間の物理的な関係についての推論は、コンピューター ...

IoT、分析、AI – デジタル化の勝利のトリオ

デジタル化が進む世界では、すべてがスピードと個々の顧客ニーズの特定と対応を中心に展開されます。サービ...

コストを 95% 削減した ChatGPT の代替品を作成しましょう! OpenAIのハードコアアップデートが来月リリースされ、ビジュアルAPIが登場

世界中の開発者は長い間、OpenAI モデルの価格に悩まされてきました。ロイター通信は、11月6日に...

在庫: 2020 年の最もクールな AI チップ スタートアップ 10 社

AIチップをめぐる争いはインテルやエヌビディアなどの半導体大手の間で激化しているが、多くの中小企業も...

VRシルキーパノラマはもうすぐそこ? Googleの360°NeRFは人々に未来を垣間見せる

少し前に、CVPR 2022 が今年の論文採択結果を発表しましたが、これは提出された論文がようやく沈...

ラオ・ファン氏が投資に参加し、MITの中国人女性科学者が2億ドルの資金を調達! 10,000台のH100が1000億以上のパラメータでAIエージェントをトレーニング

今、シリコンバレーに新たな AI ユニコーンが誕生しました!この中国人女性科学者が設立した会社はIm...

...

目を覚ませ、自動運転車は皇帝の新しい服に過ぎない

高速で運転していて、車がブレーキをかけられないとします。目の前の片側には段ボール箱が山積みになってい...

わずか60行のコードでディープニューラルネットワークを実装する

01データセットの準備使用されるデータセットは、30 次元の特徴と 569 個のサンプルを含む、sk...