ディープラーニング モデルを本番環境に導入することは、優れたパフォーマンスのモデルをトレーニングするだけでは不十分であるため、困難な場合があります。実稼働レベルのディープラーニング システムを導入するには、多数のコンポーネントを適切に設計および開発する必要があります。この記事では、実際のアプリケーションに導入される本番環境レベルのディープラーニング システムを構築するための GitHub のエンジニアリング ガイドを紹介します。 この記事では、実稼働レベルのディープラーニング システムのさまざまな構成要素を詳しく見ていき、各コンポーネントに適したツールセットとフレームワーク、および実践者が提供するベスト プラクティスを推奨します。 1. データ管理1.1. データソース オープンソースデータ(良いスタートだが、有利ではない)、データ拡張、合成データ 1.2. 注釈 注釈付き労働力源:
注釈プラットフォーム:
1.3. ストレージ データ保存オプション: (1)オブジェクトストレージ:バイナリデータ(画像、音声ファイル、圧縮テキスト)の保存
(2)データベース:メタデータ(ファイルパス、タグ、ユーザーアクティビティなど)を保存します。
(3)データレイク:データベースからは取得できない特徴(ログなど)を集約するために使用される。
(4)特徴量保存:機械学習の特徴量の保存とアクセス。
バージョン管理
1.5. 処理 実稼働モデルのトレーニング データは、データベースやオブジェクト ストレージに保存されたデータ、ログ処理、他の分類子からの出力など、さまざまなソースから取得される場合があります。 タスク間には依存関係があり、各キャラクターは依存関係が完了した後にのみ開始できます。たとえば、新しいログ データをトレーニングするには、トレーニングの前に前処理が必要です。したがって、この点ではワークフローが非常に重要になります。 ワークフロー:
2. 開発、研修、評価ソフトウェアエンジニアリング エディタ:
提案: 個人またはスタートアップ向け:
大企業の場合:
2.2. リソース管理 プログラムに空きリソースを割り当てます。 リソース管理オプション:
2.3. ディープラーニングフレームワーク 特別な理由がない限り、TensorFlow/Keras または PyTorch を使用してください。次の図は、開発と運用におけるさまざまなフレームワークの比較を示しています。 2.4. 実験管理 戦略を開発、トレーニング、評価する: 常にシンプルに始めます。小さなバッチで小さなモデルをトレーニングし、それが機能する場合にのみ、より大きなデータとモデルにスケールアップし、ハイパーパラメータの調整を実行します。 実験管理ツール:
2.5. ハイパーパラメータの調整 Hyperas: シンプルなテンプレート表記を使用して、調整するハイパーパラメータの範囲を定義する、Keras 用の hyperopt のシンプルなラッパーです。 SIGOPT: スケーラブルなエンタープライズレベルの最適化プラットフォーム。 Ray-Tune: スケーラブルな分散モデル選択研究プラットフォーム (ディープラーニングとディープ強化学習に重点を置いたもの)。重みとバイアスからのスイープ: パラメータは開発者によって明示的に指定されませんが、機械学習モデルによって近似され、学習されます。 2.6. 分散トレーニング データ並列処理: 反復処理に時間がかかりすぎる場合に使用します (TensorFlow と PyTorch の両方でサポートされています)。 モデルの並列処理: モデルが単一の GPU に収まらない場合に使用されます。 その他の解決策:
3. トラブルシューティングは「改善が必要」4. テストと展開4.1. テストとCI/CD 機械学習の生産ソフトウェアには、従来のソフトウェアよりも多様なテスト スイートが必要です。 ユニットテストと統合テスト テストタイプ:
継続的インテグレーションのための SaaS:
4.2. ネットワーク展開 (1)予測システムとサービスシステムから構成される
(2)サービスオプション:
(3)モデルサービス:
(4)意思決定:
4.3 サービスメッシュとトラフィックルーティング モノリシック アプリケーションから分散マイクロサービス アーキテクチャへの移行は困難な場合があります。 サービス メッシュ (マイクロサービスのネットワークで構成) は、このようなデプロイメントの複雑さを軽減し、開発チームの負担を軽減します。 Istio: サービス内のコードをほとんどまたはまったく変更せずに、デプロイされたサービスのネットワークの作成を簡素化するサービス メッシュ テクノロジー。 監視 目的:
さらに、クラウドプロバイダーが提供するソリューションも非常に優れています。 4.5. 組み込みデバイスおよびモバイルデバイスへの展開 主な課題: メモリ使用量と計算上の制限 解決:
組み込みおよびモバイル フレームワーク:
モデル変換:
4.6. 統合ソリューション
Tensorflow 拡張 (TFX) Airflow と KubeFlow ML パイプライン |
<<: あなたのお子さんは「顔スキャン」されましたか?顔認識技術がキャンパスに導入され物議を醸す
>>: AI企業の成人式:自由が996と衝突し、技術的理想が地上戦争と衝突する
ChatGPT は私たちが知る限り最新の音声アシスタントです。 SiriやAlexaなどの企業は長年...
小米創始者の雷軍はかつて「風の吹き口に立てば豚でも飛べる」と言った。事実は往々にしてこの通りだ。人の...
現在、ニューラル ネットワーク コードの単体テストに関する特に包括的なオンライン チュートリアルはあ...
[[411760]] Vol.1 背景ドローンの開発は大きな技術的進歩です。ドローンは、娯楽や商業用...
いつか、おそらく数十年以内に、人工ニューラル ネットワークを使用して、人間の脳をリアルにシミュレート...
6月14日のニュース:最近、人工知能の新興企業OpenAIとMicrosoftが人工知能の分野で協力...
こんにちは、ルガです。今日は、人工知能エコシステムの中核技術である「生成型人工知能」を意味する GA...
この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...
【51CTO.comオリジナル記事】この記事では主に、フレームワークの概要、システム アーキテクチャ...
パルクールはエクストリームスポーツであり、複雑な環境におけるさまざまな障害物を素早く克服する必要があ...