機械学習のための3つの主要な学習リソースを丁寧に整理

機械学習のための3つの主要な学習リソースを丁寧に整理

機械学習はここしばらく話題になっていますが、それには十分な理由があります。機械学習は、将来の行動を予測したり、電子メールをスパムから守ったり、お気に入りの記憶に基づいて映画を推奨したりするのに役立ちます。

機械学習の可能性は無限であり、この分野の報酬は高く、労働者は仕事をとても楽しんでいるので、ほとんどの場合、仕事のようには感じません。しかし、経験ゼロの人が妥当な時間内に機械学習を習得するにはどうすればいいのでしょうか? この記事ではその答えを紹介します。

背景に関係なく、最初のステップは誰にとっても同じです。機械学習を行うのに数学の博士号は必要ありません。私は数学の博士号を持っていませんし、自分が特に頭が良いとも思っていませんが、一つ確かなのは、私は周りの誰よりも一生懸命働いているということです。

働かなければ高い学位も価値がない。

そうは言っても、初心者は自分の現在の状況を客観的かつ正確に評価する必要があります。自分自身にいくつか質問してみましょう:

  • 私のプログラミングスキルはどうですか?
  • 最後に数学の問題を解いて統計をやったのはいつですか?
  • 機械学習にどれくらいの時間を投資するつもりですか?

応用機械学習を行うために、これらの分野のいずれかに特化する必要はないことに注意してください。必要なのは、平均的な数学者よりも優れたプログラミング スキルと、平均的なプログラマーよりも優れた数学スキルだけです。これが黄金律です。

ここまで読み終えたなら、素晴らしいです! では、機械学習の愛憎入り混じる世界に足を踏み入れる準備をしましょう。

1. Python データサイエンスと機械学習ブートキャンプ

[[315119]]

出典: Pexels

これは視聴に約 22 時間かかるオンライン コースですが、完全に理解するにはおそらくその 5 倍の時間がかかります。このコースは、Python の復習から始まり、ライブラリを紹介し、その後機械学習アルゴリズムについて詳しく説明します。

私はコースを修了しました。機械学習を始めるには良い方法ですが、それだけです。これらのアルゴリズムは詳細に説明されていないためです。もちろん、コースを修了するとアルゴリズムを使用して実際の問題を解決できるようになりますが、どのアルゴリズムをいつ使用し、どのように(適切に)アルゴリズムを調整するかはおそらくわからないでしょう。

これは、このコースの焦点が数学ではないためです。実際のところ、このコースでは数学をまったく教えず、さまざまな Python ライブラリの使い方を教えるだけだと思います。コース作成者は、学生がコースを受講しながら「統計学習入門」を読み、しっかりとした理論的基礎を身に付けることを推奨しています。この本も読む必要があると思います。

しかし、このコースでは依然として多くの良い練習の機会が提供されています。

価格: Udemy での通常価格は 194.99 ドルですが、多くの場合 9.99 ドルで購入できます。この投資は絶対に損失にはなりません。

2. Coursera: Andrew Ng の機械学習コース

このコースは機械学習業界に参入するための標準のようなものです。これまでに 120,000 人以上のユーザーがこのコースを評価しており、平均スコアは 5 点満点中 4.9 点となっています。これもその高品質を証明しています。

ビデオの品質は良くありませんが、コンテンツの質がそれを補っています。このコースの内容は、最初のコースよりもずっと詳細です。Ng 氏は、一部が理解できなくても大丈夫だけれど、それでも自分の弱点を見つけて、それを強化するために最善を尽くすべきだと言いました。

私の理解するところによると、このラボでは Matlab の無料の代替である Octave と呼ばれる奇妙な言語が使用されています。最近の機械学習では、ほぼ例外なく Python または R が使用されているため、これがこのコースの唯一の欠点と言えます。

価格: ビデオの視聴は無料ですが、修了証を取得するには 100 ドルを支払う必要があります。

LinkedIn プロフィールに証明書を追加するのは良いことですが、必須ではありません。

3. ハーバード大学: CS109A

[[315120]]

出典: シナ

前の 2 つの学習リソースとは異なり、これはビデオ レッスンではありません。理論的な講義 (PDF) と Jupyter ラボ ノートブックが含まれる GitHub リポジトリです。

正直、なぜこのリソースが無料なのか分かりません。

これは世界トップクラスの大学が制作した完全なコースであり、完全に無料です。 20 以上の講義と 13 のラボノートが含まれており、全体として機械学習の良い出発点となります。最近このリソースを見始めたばかりなので、まだ勉強が終わっていません。しかし、私が学んだことからすると、それは本当に素晴らしいことです。

価格: 無料。ライブラリに従って学習するだけです。

機械学習の準備

[[315121]]

出典: Pexels

これで、機械学習の旅を始めるための 3 つの優れた学習リソースが手に入りました。特に背景知識が不足していて、追いつく必要がある場合は、決して簡単ではありませんが、努力する価値はあります。

基礎知識がない場合は、3 番目のリソースであるハーバード大学のコースから始めることをお勧めします。これは、上記の 3 つのリソース コースの中では最も優れていると思います。

しかし、他の 2 つが悪いというわけではなく、むしろどちらも素晴らしいのです。私の提案は次のとおりです:

  • 理論の幅広い概要と多くの実践の機会が必要な場合は、最初のオプションを選択してください。
  • 機械学習の一般理論を学びたいが、ビデオコースが嫌いな場合は、3番目のコースを選択してください。
  • 背景を少し知りたいが、ミームを理解したい場合は、2番目を選択してください

読んでくれてありがとう。自分を大事にして下さい。

<<:  人工知能がいかにして質の高い経済発展を可能にするか

>>:  機械学習アルゴリズムは簡単に詐欺を検出できるので、詐欺を恐れる必要はありません。

ブログ    
ブログ    

推薦する

Java プログラミング スキル - データ構造とアルゴリズム「スパース配列」

[[385874]]基本的な紹介配列内のほとんどの要素が 0 であるか、同じ値を持つ配列である場合...

Java プログラミング スキル - データ構造とアルゴリズム「マージ ソート」

[[393503]]基本的な紹介マージソートは、マージの考え方を使用するソート方法です。このアルゴ...

...

人工知能が雪の結晶をリアルタイムで捉え、約700人の足跡を追跡可能に

2月4日の北京冬季オリンピックの開会式で、若い俳優たちが「平和の鳩」を手に持ち、彼らが動くと、足元に...

...

製造業の変革を促進、産業改革のためのAI主導ソリューション

製造業において、インダストリー 4.0 は単なる流行語ではなく、新たな現実となっています。新型コロナ...

ロボットによるモノのインターネットは製造業の未来となるのでしょうか?

ロボットによるモノのインターネットは、産業用ロボットと IoT センサーという 2 つの貴重なテクノ...

9つのディープラーニングアルゴリズムの紹介

1. 2段階アルゴリズム2 段階アルゴリズムには、候補ボックスの選択とターゲットの分類/位置の修正...

Facebook Cityは楽しいです!ドローンで遠隔地の山岳地帯にモバイルネットワークを提供

[51CTO.comからのオリジナル記事] Facebookは、インド政府および通信会社と協議し、太...

...

...

...

...

...

...