10行のコードで物体検出を実行する方法

10行のコードで物体検出を実行する方法

導入

人工知能の重要な分野はコンピュータービジョンです。コンピューター ビジョンは、コンピューターとソフトウェア システムが画像やシーンを認識して理解できる科学です。コンピューター ビジョンには、画像認識、ターゲット検出、画像生成、画像超解像度などの側面も含まれます。物体検出は、現実世界での使用例が膨大にあることから、おそらくコンピューター ビジョンの最も重要な側面です。

[[316589]]

オブジェクト検出とは、コンピューターやソフトウェア システムが画像/シーン内のオブジェクトを見つけて各オブジェクトを識別する機能を指します。物体検出は、顔検出、車両検出、歩行者カウント、ネットワーク画像、セキュリティ システム、自動運転車で広く使用されています。多くの実践分野において、物体検出には多くの方法が存在します。他のコンピュータ技術と同様に、物体検出の幅広い創造的で驚くべき用途は、コンピュータ プログラマーとソフトウェア開発者の努力から生まれるに違いありません。

今回は、プログラマーやソフトウェア開発者がわずか数行のコードで最先端のコンピューター ビジョン テクノロジーを既存および新規のアプリケーションに簡単に統合できるようにする Python ライブラリである ImageAI というプロジェクトを紹介します。

ImageAI導入工事

ImageAI でオブジェクト検出を実行するには、次の手順に従います。

  1. コンピュータシステムにPythonをインストールする
  2. ImageAIとその依存関係をインストールする
  3. オブジェクト検出モデルファイルをダウンロードする
  4. サンプルコードを実行する(10行のみ)

それでは、今すぐ始めましょう:

  • 公式の Python 言語 Web サイトから Python 3 をダウンロードしてインストールします。
  • pip 経由でインストール: TensorFlow、OpenCV、Keras、ImageAI

  1. pip3 テンソルフローをインストール
  2. pip3 opencv-python をインストール
  3. pip3 keras をインストール
  4. pip3 イメージAI をインストール--upgrade  

3) この記事のリンクから、オブジェクト検出用の RetinaNet モデル ファイルをダウンロードします。

https://towardsdatascience.com/object-detection-with-10-lines-of-code-d6cb4d86f606

プログラムを実行する

とても良い。依存関係がインストールされたので、最初のオブジェクト検出コードを記述できます。 Python ファイルを作成し、名前を付けて (たとえば、FirstDetection.py)、次のコードを記述します。検出したい RetinaNet モデル ファイル イメージを、Python ファイルを含むフォルダーにコピーします。

  1. imageai.DetectionからObjectDetection をインポートします 
  2. インポートOS
  3.  実行パス = os.getcwd()  
  4. 検出器 = オブジェクト検出()  
  5. 検出器.setModelTypeAsRetinaNet()  
  6. detector.setModelPath( os.path.join (execution_path, "resnet50_coco_best_v2.0.1.h5" ))  
  7. 検出器.loadModel()  
  8. 検出 = detector.detectObjectsFromImage( 入力イメージ = os.path.join (実行パス、 「image.jpg」 ) 出力イメージパス= os.path.join (実行パス、 「imagenew.jpg」 ))
  9.  検出における各オブジェクトについて:  
  10. print(eachObject[ "name" ], ": " ,  
  11. 各オブジェクト[ "パーセンテージ確率" ] )

実行中にこのエラーが発生した場合は、次の点に注意してください。

  1. ValueError: バックエンドをインポートできません: theano python mymodel.py

次に、次のことを試すことができます。

  1. osos.environ[ 'KERAS_BACKEND' ] = 'tensorflow'インポートします  
  2. imageai.Detection インポート ObjectDetection

次に、コードを実行し、結果がコンソールに表示されるまで待ちます。結果がコンソールに表示されたら、FirstDetection.py が保存されているフォルダーに移動すると、新しい画像が保存されていることがわかります。以下の 2 つのサンプル画像と、検出後に保存された新しい画像をご覧ください。

テスト前:

[[316590]]

テスト後:

データ結果

プログラムは各オブジェクトの確率データを出力していることがわかります。

  • 人 : 55.8402955532074
  • 人 : 53.21805477142334
  • 人: 69.25139427185059
  • 人: 76.41745209693909
  • 自転車: 80.30363917350769
  • 人: 83.58567953109741
  • 人: 89.06581997871399
  • トラック: 63.10953497886658
  • 人: 69.82483863830566
  • 人 : 77.11606621742249
  • バス: 98.00949096679688
  • トラック: 84.02870297431946
  • 車: 71.98476791381836

プログラムは画像内の次のターゲットを検出できることがわかります。

人、バイク、トラック、車、バス。

検出したい写真をプログラムに直接入れて実行し、効果を確認することができます。

原理説明

それでは、この 10 行のコードがどのように機能するかを説明しましょう。

  1. imageai.DetectionからObjectDetection をインポートし、 osexecution_path をインポートします。
  2. = os.getcwd()

上記の 3 行のコードでは、最初の行で ImageAI オブジェクト検出クラスをインポートし、2 行目で python os クラスをインポートし、python ファイル、RetinaNet モデル ファイル、および画像が配置されているフォルダーへのパスを保持する変数を定義しました。

  1. 検出器 = ObjectDetection() 検出器.setModelTypeAsRetinaNet() 検出器.setModelP
  2. ath( os.path.join (execution_path, "resnet50_coco_best_v2.0.1.h5" ))detector.loadModel()検出=
  3. detector.detectObjectsFromImage(input_image=os.path.join (実行パス
  4. th 、 "image.jpg" )、 output_image_path=os.path.join (実行パス
  5. 「imagenew.jpg」 ))

上記のコードでは、1 行目で Object Detection クラスを定義し、2 行目でモデル タイプを RetinaNet に設定し、3 行目でモデル パスを RetinaNet モデルのパスに設定し、4 行目でモデルを Object Detection クラスにロードし、検出関数を呼び出して、5 行目で入力画像パスと出力画像パスを解析します。

  1. 検出内の各オブジェクトについて: print(eachObject[ "name" ] , " : "       
  2. 、各オブジェクト[ "percentage_probability" ] )

上記のコードでは、最初の行で detector.detectObjectsFromImage 関数によって返されたすべての結果を反復処理し、2 行目に画像内で検出された各オブジェクトのモデル名とパーセンテージ確率を出力します。

<<:  大手企業がどのように人工知能を活用し、実践しているのかご覧ください。

>>:  国産ディープラーニングフレームワーク「MegEngine」が3月末にオープンソース化

推薦する

テキストマイニングからの分類、クラスタリング、情報抽出などのアルゴリズムのレビュー

テキストマイニングは、推奨システム、検索システム、その他の広範なアプリケーションなど、テキストマイニ...

企業は AI、IoT、AR、VR、ブロックチェーン、ビッグデータをどのように活用して顧客を維持できるでしょうか?

企業は、顧客維持率と顧客体験を向上させ、競合他社に負けないようにするために、人工知能 (AI)、モノ...

AIを活用してパイロットプロジェクトを計画する方法

人工知能 (AI) は、あらゆる業界の企業にビジネス運営の成長と改善の機会を提供します。 Fortu...

「リーフチップ」が小型ロボットに油圧パワーを提供

[[186706]]マサチューセッツ工科大学(MIT)は最近、同校の研究者らが樹木や植物のポンプ機構...

モノのインターネットを支援するAI搭載量子コンピューティング

量子コンピューティングはまだ開発段階にありますが、人工知能とモノのインターネットの開発を加速させる新...

最新レビュー!拡散モデルと画像編集の愛憎関係

この記事は、Heart of Autonomous Driving の公開アカウントから許可を得て転...

「2024年最重要AIチャート」が大拡散中!オープンソースのAIモデルは独自のモデルよりも優れているとルカン氏は称賛

最近、この写真はAIコミュニティで広まり始め、LeCun氏もそれを転送しました。この図は、AI オー...

AIアプリケーションのための実用的なフレームワークを構築するための5つのステップ

[51CTO.com クイック翻訳] ガートナーの調査によると、約 37% の組織が何らかの形で人工...

笑顔は73年にわたる:ディープフェイクがイスラエル建国戦争の古い写真を「復活」させる

[[434314]]ディープフェイクを使って古い写真をアニメ化し、殉教者を追悼するのは良いことだが、...

Facebookは、さまざまな機械学習の問題に適用できる、勾配フリー最適化のためのオープンソースツール「Nevergrad」をリリースしました。

自然言語処理や画像分類から翻訳など、ほとんどの機械学習タスクは、モデル内のパラメータやハイパーパラメ...

AIと宇宙技術が日常生活をどう改善するか

衛星から都市計画まで、人工知能の進歩は新たな洞察をもたらしています。 [[270081]]宇宙技術と...

Baidu Brain EasyDL Retail Editionは、消費財メーカーのオフライン流通チャネルのデジタルアップグレードをサポートします。

消費財ブランドにとって、製品の売上を増やすことが仕事の中心となります。しかし、電子商取引が普及してい...

開発者に人気の機械学習 API 10 選

つい最近まで、人工知能には科学者が白衣を着て研究室で研究を行う必要があると考えられていました。この科...

CUDA と TensorRT モデルの展開の最適化: 重要な考慮事項と実践的な戦略

この記事は、Heart of Autonomous Driving の公開アカウントから許可を得て転...