AI がモノのインターネットをよりスマートにする 5 つの方法

AI がモノのインターネットをよりスマートにする 5 つの方法

第三者の介入なしに何十億ものデバイスを接続してデータを交換できるため、モノのインターネット (IoT) は今日最も魅力的なトピックの 1 つとなっています。これほど広範囲のデータを手動で分析するのは、控えめに言っても非現実的であるため、AI を活用して IoT の効率化を図るのは時間の問題です。

[[317915]]

Microsoft の AI 専門家である Rashmi Misra 氏は最近、IoT における AI の実装に関するポッドキャストで、Microsoft は IoT デバイスによって収集されるデータの価値を高めることに関心があることを明らかにしました。これにより、企業は顧客の期待に応えるより効果的な製品やサービスを開発するためのソリューションを得ることができます。

Microsoft が IoT と AI の融合に興味を持っていることは、これら 2 つの最新テクノロジを組み合わせることに真の可能性があることを明確に示しています。 AI がモノのインターネットをどのように改善できるかを見てみましょう。

航空会社の乗務員管理

ボーイングは航空業界の巨人です。したがって、リソース配分戦略には細心の注意を払っています。航空会社の乗務員を管理するのは、熟練した、精力的で、やる気があり、対応可能な乗務員をすべてのフライトに集める必要があるため、困難な仕事です。ボーイングの子会社ジェッペセンは、IoTデータを活用して乗務員をタスクに割り当てるAIベースのソフトウェアを設計した。

Jeppesen Crew Rostering プラットフォームの利点は、シームレスなクルーの管理を提供し、顧客が経費を削減し、常に最も効率的なクルーを確保できることです。同じ原則はどの業界にも適用できます。 NSBroker のようなサービスでもこのアプローチを使用できます。

テスラの自動運転車

AIとIoTを組み合わせて実際に使用することは比較的新しい概念ですが、最先端の企業はすでにビッグデータを活用してより優れた製品の開発に取り組んでいます。 テスラは、さまざまなセンサー、レーダー、カメラ、GPS を使用して、安全な自動運転体験を提供するという素晴らしい仕事をしてきました。 現在、人工知能とモノのインターネットを組み合わせることで、テスラの車はさまざまな交通状況を学習して適応できるようになり、最終的には完全に自律的な無人運転車が現実のものとなるでしょう。

最も優れている点は、すべてのテスラ車両が相互に連携し、各ユニットのパフォーマンスがさらに向上することです。

スマートサーモスタット

スマートフォンやその他の IoT 制御デバイスを介して自宅の温度を管理することがますます一般的になりつつあります。人工知能を統合することで、ユーザーエクスペリエンスから学習し、より優れたパフォーマンスを発揮するデバイスを生産できるようになります。

Nest Labs は、家庭内の冷房と暖房の状態を自動で管理できる次世代の自己学習型サーモスタットを開発しました。デバイスがユーザーの好みやスケジュールを学習し、自律的に動作できるようになるまでには数週間かかります。スマート サーモスタットは、年間の各日の好みの温度設定などのデータを収集し、その情報に基づいて温度を調整します。

運輸・物流

現在、IoT により、物流会社や運送会社はリアルタイムで情報を提供できるようになり、意思決定プロセスの改善や損失防止のためのデータの提供が可能になります。 AI を統合することで、特に多数の車両を保有し、業務が忙しい事業主は、データをより迅速に収集、分析し、より有用なフィードバックを生成できるようになります。

AI を導入することで、より効率的なルートを作成し、その他の運用コストを削減し、人間の介入なしに作業を自動的に委任できるようになります。これに自動運転車を導入すれば、AI と IoT の融合によって完全に運営される運輸会社が誕生することになります。

種の絶滅を防ぐ

私たちは自然を当たり前のこととして捉えがちですが、技術の進歩のためのインスピレーションやリソースは、自然界に最も多く存在するということを忘れています。私たちの過失や直接的な影響によって絶滅した種の絶滅を防ぐために、自然保護活動家たちはさまざまな手段や実践を駆使しています。

Wild Track は、機械学習アルゴリズムを使用して画像やその他の非侵襲的に収集された情報から収集されたデータを収集および分析し、絶滅危惧種を理解して追跡する、非侵襲的な野生生物追跡方法です。研究者たちは、この技術が野生動物、特にタグが簡単に付けられない動物や首輪をつけてもじっとしていられない動物を保護する可能性について楽観的だ。

結論は

これらは、IoT デバイスを通じて収集されたビッグデータを AI で分析し、各スマート デバイスの機能を向上する方法のほんの一部です。 私たちは近い将来、私たちのニーズや習慣に適応する完全に自動化された家に住むようになるでしょう。 可能性はほぼ無限です。私たちが持っているものを最大限に活用し、世界を私たち全員にとってより良い場所にするのは私たち次第です。

<<:  産業用 IoT を実装するための 3 つの重要なステップ

>>:  データ サイエンティストに Kubernetes クラスターの管理を任せるのはやめましょう…

ブログ    
ブログ    

推薦する

人工知能の時代が到来し、教育は大きく変わるかもしれません。未来の教育は人工知能をベースにしたものになるのでしょうか?

「大作 SF 映画」を見るのが好きな学生にとって、最も気に入っているのは、映画に遍在する人工知能か...

AIGC に向けてビジネスを準備するために CIO が尋ねるべき 8 つの質問

企業は現在、AIGC の可能性を活かすためにデータ、人材、プロセスを準備することが今後の課題であると...

OpenAIがChatGPT Enterprise Editionをリリース、より高いセキュリティとプライバシー保護を実現

8月29日、OpenAIは、企業ユーザーのニーズを満たし、より高いセキュリティとプライバシー保護を提...

...

...

AI人工知能は弱い:あなたを瞬時に複製できる仮想人間が登場

今、テクノロジー界で最もホットな話題はAI(人工知能)です。将来、世界はこれらの人工知能に支配される...

銀行の二重生体認証実験:二重のトラブルか二重のセキュリティか?

2つの生体認証技術は顔認証と指紋認証です。実験では、両方ともモバイルデバイスを通じて実装され、2つ...

...

データセットを正しく分割するにはどうすればいいでしょうか? 3つの一般的な方法の概要

データセットをトレーニング セットに分割すると、モデルを理解するのに役立ちます。これは、モデルが新し...

機械学習を拡張するための5つのポイント

Facebook は効果的な人工知能について私たちに多くのことを教えてくれます。最近のガートナー社の...

人工知能はすでに無敵なのでしょうか? AIに取って代わられない6つの仕事

人工知能は万能のように思えますが、実際には人工知能に代替できない職業も数多くあります。 HSBCは銀...

AIも催眠術をかけられるのか?

いつか、おそらく数十年以内に、人工ニューラル ネットワークを使用して、人間の脳をリアルにシミュレート...

DFSアルゴリズムは5つの島の問題を克服する

[[429450]]この記事はWeChatの公開アカウント「labuladong」から転載したもので...

...

...