AIのための大規模ストレージインフラストラクチャの要件

AIのための大規模ストレージインフラストラクチャの要件

ストレージ インフラストラクチャに人工知能を導入することで、容量とパフォーマンスの要件が高まっています。 AI や機械学習を採用したスト​​レージ環境では、ストレージ容量が数十 TB または数百 TB にまで拡大することも珍しくありません。オールフラッシュ アレイ製品を提供するベンダーは、このような大量のデータはオールフラッシュ アレイに保存できないと主張していますが、ほとんどのストレージ環境では、並列性があるため、ハードディスクからフラッシュとほぼ同等のサービスを得ることができます。

[[322749]]

要件1: 高性能ネットワーク

AI/ML 環境では、オンプレミスまたは直接接続ストレージ (DAS) を使用するコンピューティング サーバーのクラスターを作成することは珍しくありません。共有ストレージは容量の使用効率が高く、コンピューティング ノード間でワークロードをより均等に分散できますが、多くの組織はコンピューティング ノードと共有ストレージ間で発生するネットワーク遅延を排除するために、これらの効率を犠牲にしようとしています。

NVMe over Fabric (NVMe-oF) は、フラッシュや不揮発性メモリなどのメモリベースのストレージ デバイス専用に設計された次世代ネットワークです。 DAS NVMe とほぼ同じレイテンシを提供します。 NVMe の深いコマンドとキューの深さは、高度に並列化されたワークロードにも適しており、AI/ML はおそらくすべてのワークロードの中で最も並列化されています。 NVMe-oF はメモリ ストレージ用に特別に設計されていますが、AI/機械学習向けにもカスタマイズされています。

要件2: 共有ストレージ

NVMe-oF がコンピューティングとストレージ間のレイテンシの問題を解決できれば、2 番目の要件である共有ストレージが可能になります。 NVMe-oF 接続の共有ストレージ ソリューションを使用すると、ワークロードは共有ストレージの自然な特性をすべて活用できます。まず、すべてのノードがすべてのデータにアクセスできるため、ワークロードは計算負荷をより均等に分散できます。これは、グラフィックス プロセッシング ユニット (GPU) を備えたノードがすべてのデータにアクセスできることも意味します。 GPU は CPU よりもはるかに高価なので、GPU でより多くの負荷を処理できるようにすることが優先され、共有ストレージによってこれが容易になります。

数十ペタバイトまたは数百ペタバイトのワークロード容量要件を測定する場合、ストレージ効率の向上は大幅なコスト削減につながる可能性があります。各コンピューティング ノードに専用のハード ディスクがあるクラスターでは、IT チームは使用可能なストレージ容量をクラスター内の他のノードに簡単に再割り当てすることができません。直接接続ストレージ (DAS) モデルにはリソース プーリングがないため、メーカーが市場に投入する大容量ハード ドライブを組織が効果的に使用することもできません。現在、デュアルパーパスノード (コンピューティングとストレージ) には 12 台以上の 16 TB フラッシュ ドライブまたは 18 TB ハード ドライブがインストールされている場合がありますが、単一のノードではこれを効率的に使用できない可能性があります。 AI/ML ストレージ アーキテクチャがこれらのドライブを専用サーバーから集中的に使用する場合は、より細かく割り当てることができます。 AI/ML ワークロードは、容量の需要を満たすために拡張する必要があるだけでなく、パフォーマンスの需要を満たすためにストレージ ノードに直接アクセスする必要もあります。

要件3: 階層型ストレージ

AI/ML データセットの規模を考えると、数十ペタバイトのフラッシュ ストレージをプロビジョニングするのはコストがかかりすぎるため、階層化ストレージはほぼ必須です。実際には、特定の AI ワークロードは 80/20 ルールに従わず、常にデータの 80% が非アクティブになります。これらのワークロードは、100% 休止状態から 100% アクティブ状態に移行できます。それでも、それらは高度に並列化されており、数百の低パフォーマンスの機械式ハードドライブがすべて同時にワークロードを処理できるため、これらのワークロードに必要なパフォーマンスを提供できるはずです。そうでない場合は、現在のネットワーク技術が許す限り高速にデータを転送できます。

要件4: 並列アクセス

並列アクセスとは、ストレージ インフラストラクチャ内の各ノードが、AI/ML クラスター内の各コンピューティング ノードに必要なデータへの直接アクセスを提供することを意味します。単一の制御ノードがボトルネックになることはありません。多数のコンピューティング ノードが同時にストレージ プールにアクセスする必要がある可能性があるため、AI/ML では高レベルの並列処理が重要です。この並列処理により、ハードドライブが AI/ML ストレージ インフラストラクチャのコンポーネントとなるスループットが可能になります。並列ファイル システムでは、ほとんどの場合、クライアントまたはエージェントが必要ですが、そのエージェントは並列アクセスを提供することに加えて、一般的な NFS プロトコルよりもオーバーヘッドが少なくなることがよくあります。

要件5: 複数のプロトコル

処理には並列アクセスが必要ですが、もう 1 つの要件はマルチプロトコル アクセスです。これは、データをストレージ インフラストラクチャに抽出する場合に特に役立ちます。多くの AI および機械学習プロジェクトは、モノのインターネット (IoT) デバイスからデータを受け取りますが、多くの場合、付随するプロトコルを使用して通信する必要があります。多くのデバイスはサーバー メッセージ ブロック (SMB) またはネットワーク ファイル システム (NFS) を介して通信し、いくつかのデバイスは S3 バケットを使用します。さらに重要なのは、ネイティブの並列ファイルシステムクライアントを使用する人はほとんどいないということです。

要件6: 高度なメタデータ処理

AI/機械学習ワークロードはメタデータを多用するワークロードですが、メディアやエンターテイメントのワークロードほど豊富なメタデータを使用するため、通常はそうではありません。 AI/ML ワークロードにおけるメタデータの重要性は、共通ファイルの数から生じます。ほとんどの場合、数十億から数百ペタバイトの AI ワークロードは数十億のファイルで構成されます。これらの各ファイルにはメタデータがあり、他のワークロードと同様に、IO トランザクションのほとんどはメタデータから発生します。 AI/ML ストレージ インフラストラクチャは、ファイル数が増加してもシステムのパフォーマンスを維持できるようにメタデータを管理する必要があります。すべてのノードが管理に参加できるように、メタデータをストレージ クラスター全体に分散する必要があります。ベンダーは、システムが常に応答可能であることを確認するために、各ストレージ ノードのフラッシュ メモリ上のストレージ メタデータを確認する場合もあります。

結論は

AI/ML ワークロードは、組織が過去に実行した可能性のある他のワークロードとは根本的に異なります。初期の AI/ML プロジェクトでは、データ ストレージに直接接続ストレージ (DAS) に依存していました。問題は、直接接続ストレージ (DAS) が負荷を均等に分散できないことです。これは、AI ワークロードあたりの GPU の数が増えるにつれて重要になります。さらに、直接接続ストレージ (DAS) は非効率であり、データのコピーと移動に費やされる容量と時間の無駄により、機械式ハード ドライブの価格上の利点が失われます。

<<:  肖像情報セキュリティには「内部と外部の共同管理」が必要

>>:  顔認識会社Clearviewのソースコードがサーバーの設定ミスにより公開される

推薦する

...

180 の大学が人工知能専攻の追加を承認されました。これらの大学への出願をお勧めしますか?

[[317457]]教育部が発表した最新の学部専攻新登録リストでは、理工系や総合大学のほか、語学や...

...

AI面接ロボットのバックエンドアーキテクチャの実践

01 はじめにAI面接ロボットは、Lingxiインテリジェント音声セマンティックプラットフォームの人...

Cloudera は研究から実稼働までエンタープライズ機械学習を加速します

クラウド向けに最適化された機械学習および分析のための最新プラットフォームを提供する Cloudera...

PyTorch の 4 分間のチュートリアルで線形回帰の実行方法を学びます

[[271978]]ビッグデータダイジェスト制作編纂者:洪英飛、寧静PyTorch は、ディープラー...

大規模ニューラルネットワークに関する最新の文献のレビュー:効率的な DNN のトレーニングとメモリ使用量の節約

現代のディープラーニングおよび人工知能技術の開発には、ディープニューラルネットワーク (DNN) を...

ChatGPT の残念な欠点 10 選: チャットボットの限界を探る

ChatGPT は、翻訳、作詞作曲、リサーチ、コーディングなど、さまざまなスキルに優れています。しか...

7.4K スター! わずか数分で機械学習モデル用の美しいインタラクティブ インターフェースを生成できます

Gradio は、機械学習やデータ サイエンス関連のデモや Web アプリケーションを構築するための...

機械学習の参入障壁が下がり、機械学習エンジニアのポジションがなくなる可能性も

機械学習エンジニアチームの責任者であり、Looker の最高製品責任者でもある彼は、10 年を超える...

...

Microsoft OfficeがCopilot: Princessに接続されている場合は、

AIの助けがあれば、将来のオフィスではそれほど多くのコーヒーは必要なくなるかもしれません。サイエン...

機械学習における分類タスクの共通評価指標とPythonコード実装

データ ポイントを特定の数の定義済みクラスに分類するように ML モデルをトレーニングすることがタス...

2021年になっても、データにラベルを付ける方法がまだわかりませんか?なぜ人工知能にはデータ注釈が必要なのでしょうか?

「データを持っている者は人工知能を持っている。」現在、人工知能は私たちの生活の中で当たり前のものに...

アルゴリズムは難しい、プログラミングは簡単ではない、プログラマーの苦労を誰が理解できるだろうか?

[[199239]]今日は、プログラマーにとっての困難がどこにあるのかについて議論しましょう。アル...