Google翻訳カーネルのアップグレードによりエラー率が55%以上低下したと主張

Google翻訳カーネルのアップグレードによりエラー率が55%以上低下したと主張

最近、Google 翻訳はひっそりと翻訳コアをアップグレードしました。 Google が提供する公式データによると、Google 翻訳で使用されている Google ニューラル マシン トランスレーション (GNMT) システムは、現在利用可能な最も高度なトレーニング テクノロジを使用しており、これにより機械翻訳のレベルが向上し、翻訳エラーがさらに 55%~85% 削減されます。

Googleの翻訳モデルの品質

10 年以上前、Google は Google 翻訳をリリースしました。初期の頃は、フレーズベースの統計的機械翻訳によって、入力された文章が単語やフレーズに分解され、個別に翻訳されていました。この翻訳方法の欠点は非常に明白です。文中の元々完全な情報が断片化され、首尾一貫して表現できないのです。この現象は、英語と中国語間の翻訳において特に顕著です。

一方、Google ニューラル機械翻訳は、入力された文全体を翻訳します。

中国語から英語への翻訳を例にとると、Google ニューラル機械翻訳はまずこの中国語の文章内の単語をベクトルのリストにエンコードします。各ベクトルは、これまでに読み取られたすべての単語の意味を表します (エンコーダー)。文章全体を読み終えると、デコーダーが動作を開始し、英語の文章を 1 単語ずつ生成します (デコーダー)。

上図はGoogleニューラル機械翻訳の中国語-英語翻訳原理を示している。

各ステップで正しい翻訳された単語を生成するために、デコーダーは、生成された英語の単語に最も関連性の高い中国語ベクトルの重み分布に焦点を当てます。

最初に提案されたとき、ニューラル機械翻訳システムは、中規模のデータセットではフレーズベースの翻訳システムに匹敵するものでした。

Google は現在、ニューラル機械翻訳によって非常に大規模なデータセットを扱う際の多くの課題を克服し、より高速かつより正確に翻訳できるシステムを構築したと発表している。

現在、中国語から英語への翻訳にはGoogleのニューラル機械翻訳システムが利用されています。 Google 翻訳は現在、モバイルとウェブ上での中国語から英語への翻訳にニューラル機械翻訳を使用しており、1 日あたり約 1,800 万件の翻訳が行われています。

大規模なデータセットでテストされた Google のニューラル機械翻訳システムを搭載した最新の Google 翻訳は、どれほど効果的なのでしょうか?

簡単な比較テストを行いました。もちろん、これはまだ中国語から英語への翻訳のシナリオです。

テストシナリオ: PC側Google翻訳ウェブバージョン

英語のメッセージがランダムに選択され、元のテキストは次のとおりです。

COVID-19 が始まって以来、小売業やブランド製造業のパートナーからは、消費者の需要の変動を踏まえ、消費者の関心がどのように変化しているかについて、より詳しい情報を求めているという声が寄せられています。こうした変化は、Google での検索方法に反映されています。先月は、人々が自宅で過ごす時間が増えたため、家庭用品やジグソーパズルの検索関心が急増しました。今月は、米国ではミシンやベーキング用品、英国とオーストラリアではテザーボール セットやチョークへの関心が急増しました。

企業は、Google トレンド、ソーシャル リスニング、アンケート、自社データなど、さまざまなリソースを活用して消費者の関心の変化を把握し、即座に意思決定を行っています。しかし、何を探せばよいかがわからなければ、どの製品カテゴリが人気を集めているのか、またそれがチャンスとなる可能性があるのか​​を簡単には理解できません。

そのため、Think with Google で急成長中の小売カテゴリ ツールをリリースします。このツールは、Google 検索で急成長している商品関連カテゴリ、そのカテゴリが成長している場所、関連する検索語句を表示します。人々が検索している商品カテゴリに関するこのような分析情報を提供するのは今回が初めてです。

Google 翻訳の旧バージョンによる英語 - 中国語の翻訳結果:

アップグレード後の Google 翻訳による新しい英語 - 中国語翻訳結果。赤でマークされた部分は、以前の翻訳結果と異なります。新しい翻訳は次のとおりです。

2つの翻訳結果を比較すると、大きな違いがあることがわかります。全体的に、新しい翻訳結果で赤でマークされた表現は、明らかに中国語の文法や表現習慣に沿っています。

さらに、最後の段落の翻訳結果の最適化がより顕著になり、Google の製品名「Think with Google」が正確に識別され、ランダム翻訳の恥ずかしさが回避されました。

確かに賢いですね!

<<:  プロセス産業におけるグリーン製造における人工知能の機会と課題

>>:  IoT、AI、ブロックチェーンがビジネス経済を変革する

ブログ    
ブログ    
ブログ    

推薦する

大規模モデルの観点から見た因果推論

1. 因果推論と大規模モデル近年、因果推論は研究のホットスポットとなり、多くのシナリオに適用されてき...

Googleの検索アルゴリズムがユーザーをより深く理解する方法

Googleは現在、コア検索アルゴリズムに変更を加えており、検索結果の最大10分の1のランキングに影...

人工知能の時代、3つの問題が未来を決定づける

学習と進化ご存知のとおり、量子という概念は120年前にドイツの物理学者プランクによって提唱されました...

...

メモリ帯域幅とコンピューティング能力、どちらがディープラーニング実行パフォーマンスの鍵となるのでしょうか?

モデルのハードウェア要件に関して、まず頭に浮かぶのは計算量、つまりディープラーニング モデルがフィー...

認知知能は魔法のようなもの:2021 年の主要なブレークスルーを振り返る

著者: ユン・チャオ[51CTO.com からのオリジナル記事]人工知能ソリューションの応用が進むに...

ニューラルネットワーク?決定木?できないよ!説明可能な AI を解決できるのは誰か?

この記事は公開アカウント「Reading Core Technique」(ID: AI_Discov...

トランプの「猫と犬バージョン」を生成、偽顔ツールStarGANv2が壊れており、アルゴリズムがオープンソース化されている

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

小売業界におけるAIインテリジェントビデオ分析の応用

人工知能 (AI) は、情報の集合からビジネス価値のある洞察を抽出することを目的とするデータ サイエ...

情報セキュリティにおける機械学習の 5 つの主な使用例

簡単に言えば、機械学習とは「明示的にプログラムされなくても学習する(コンピュータの)能力」です。機械...

世界の AI 人材レポートが発表されました: 清華大学が 3 位、北京大学が 6 位にランクイン!シリコンバレーが40万人を解雇、プログラマーの面接は12回

先ほど、グローバル AI 人材レポートが発表されました。世界のトップクラスの AI 人材のうち、約半...

スタンフォード大学の学生が出会い系アプリをハッキング! GAN モデルを使用して男性に変装し、顔認識システムを欺く

誰かが本当にあなたの顔を真似して、顔認識システムを回避できるのです! 最近、スタンフォード大学の研究...

我が国は人工知能などの主要な技術標準に関する研究を強化します

標準は経済活動や社会の発展を技術的に支えるものであり、人々の生活に深く関わっています。最近、中国共産...

機械学習実践体験: データプラットフォームの設計と構築

近年人気の技術である機械学習は、数多くの「人工知能」製品でよく知られているだけでなく、従来のインター...

人工知能とは何ですか?米Googleが正式発表!

[[213130]] 1つこれは世界を変える握手です!今日、世界で最も最先端の2つの科学、 人工知...