「解釈可能な機械学習」に関する唯一の中国語の本はここにあります。復旦大学の大学院生によって翻訳され、元の著者も気に入っています。

「解釈可能な機械学習」に関する唯一の中国語の本はここにあります。復旦大学の大学院生によって翻訳され、元の著者も気に入っています。

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載しています。転載の際は出典元にご連絡ください。

新型コロナウイルス感染症の流行により、多くのAI医療技術が注目を集めています。

しかし、AI には常にブラックボックスの問題があります。AI がプロセスを説明できない場合、患者の診断を AI に任せることができるのでしょうか?機械学習の解釈可能な問題に関する本はほとんどありません。

最近、復旦大学の大学院生である朱明超さんが、『解釈可能な機械学習』という珍しい書籍を中国語に翻訳しました。

この本はもともと、ドイツのミュンヘン大学の博士号を持つ Christoph Molnar 氏によって執筆されました。完成までに 2 年かかりました。250 ページにわたるこの本は、解釈可能な機械学習を体系的に紹介する唯一の本です。

Zhu Mingchao 氏は最近この本の翻訳と校正を完了し、オープンソース化されて GitHub ウェブサイトに掲載されました。翻訳の過程で、朱氏は原作者とも何度も議論を重ね、中国語版はクリストフ・モルナー氏本人のTwitterでの推薦もあった。

「説明可能性」はこの本の中心的なテーマです。著者は、解釈可能性は機械学習だけでなく日常生活においても非常に重要な問題であると考えています。この本は、機械学習の実践者、データ サイエンティスト、統計学者、および機械学習モデルを解釈可能にすることに関心のあるすべての人に推奨されます。

本書「解釈可能な機械学習」には、合計 7 つの章が含まれています。

  • 第1章 はじめに
  • 第2章 説明可能性
  • 第3章: データセット
  • 第4章: 解釈可能なモデル
  • 第5章: モデルに依存しない手法
  • 第6章: サンプルに基づく説明
  • 第7章: 水晶玉

モルナー氏は、データセットとブラックボックス機械学習は多くの問題を解決するが、これがそれらを使用する最良の方法ではないと述べた。現在、モデル自体が情報源としてデータに取って代わっているが、解釈可能性によってモデルによって捕捉された追加情報を抽出できる。

機械やアルゴリズムが日常生活のいたるところに存在するようになると、社会的受容性を高めるために説明可能性も必要になります。結局のところ、科学者でさえ「ブラックボックス」を完全に理解できないのであれば、一般の人々はモデルによる決定を完全に信頼できるのでしょうか?

この本は機械学習の解釈可能性に焦点を当てています。この本では、線形回帰、決定木、決定ルールなどのシンプルで解釈可能なモデルを学ぶことができます。

次の章では、特徴の重要性や累積的なローカル効果などのブラックボックスモデルを解釈するための一般的なモデルに依存しない方法と、Shapley 値と LIME を使用した単一インスタンス予測の解釈に焦点を当てます。

さまざまな解釈アプローチが詳細に説明され、批判的に議論されます。どのように機能するのでしょうか?メリットとデメリットは何ですか?出力をどのように解釈すればよいでしょうか?この本では、機械学習プロジェクトに最適な解釈方法を選択して正しく適用できるようになります。

この本では、さまざまな実例を組み合わせて関連する概念を紹介し、読者がさらに学習できるように参考リンクも提供しています。

さらに、Zhu 氏は Goodfellow 氏の「機械学習」を自身の GitHub で翻訳しており、参考として自身の Python コードも翻訳に含めています。興味のある学生も参考にして学ぶことができます。

最後に、「Interpretable Machine Learning」という本のプロジェクトアドレスは次のとおりです: https://github.com/MingchaoZhu/InterpretableMLBook

<<:  人工知能の実装によるIoTセキュリティの最適化

>>:  COVID-19パンデミックの影響を受けて、世界のエッジAIソフトウェア市場は急速な発展を遂げている

ブログ    
ブログ    
ブログ    

推薦する

...

今後10年間の主要な投資の方向性を予測して、あなたは未来に向けて準備ができていますか?

古代から今日のモバイルインターネット時代に至るまで、人類の誕生以来、世界に影響を与えてきたあらゆる破...

エンコーダー・デコーダーアーキテクチャを放棄し、エッジ検出に拡散モデルを使用する方が効果的です。国立国防科学技術大学はDiffusionEdgeを提案しました。

既存のディープ エッジ検出ネットワークは通常、マルチレベルの特徴をより適切に抽出するためのアップサン...

突然!人気のAI企業が倒産の危機に!創設者は辞任を求められました!

執筆者 | Yan Zheng制作:51CTO テクノロジースタック(WeChat ID:blog)...

...

...

...

ビッグデータとAIアプリケーションを成功させる4つの鍵

ビッグデータ技術が今や世界の主要なマーケティングツールの 1 つになっていることは周知の事実です。 ...

...

プロの債権回収業者は失業するのでしょうか?人工知能はこうやって人々にお金を返済させる

他人に代わって借金を回収する「プロの債権回収業者」というと、恐ろしいイメージを抱く人も多いだろう。 ...

JS を使用して複数の画像類似性アルゴリズムを実装する

検索分野では、Google画像検索、Baidu画像検索、Taobaoの商品写真検索など、「類似画像・...

Hehe情報:AI + ビッグデータ、デジタル金融をさらに進化させる

[51CTO.comからのオリジナル記事] 2020年、COVID-19パンデミックは世界経済に深刻...

スマートホームデバイスにおける自然言語生成の応用

スマートホームデバイスへの自然言語生成 (NLG) の統合により、テクノロジーとのやり取りの方法に革...