機械学習は 5G ネットワークにどのように役立ちますか?

機械学習は 5G ネットワークにどのように役立ちますか?

機械学習

機械学習は、コンピューティング システムの能力の向上とデータの可用性の向上により、過去 10 年間で大幅に成熟したエンジニアリングの分野です。従来のシステムとは異なり、機械学習はパターンを認識するように教えることができるだけでなく、環境から学習することもできるツールをエンジニアに提供し、時間の経過とともにパフォーマンスを向上させるのに役立ちます。

機械学習の開発初期には、主に画像認識や音声認識に使用されていましたが、近年では状況が変化してきています。機械学習は現在、医療診断、株式市場の意思決定、さらには環境制御などの分野で広く使用されています。

チャンネル検索

[[331153]]

ワイヤレス テクノロジーは非常に複雑であり、テクノロジーが進化するたびに複雑さが増していきます。無線信号に基づく最初の無線技術では、信号を受信するためにスパークギャップが使用され、次世代の無線では、信号を復調して音声情報を抽出するためにダイオードが使用されます。無線技術が数回繰り返された後、情報の機密性を保つために、暗号化機能と組み合わせた複雑なデジタル回路が導入されるようになります。

現在、多くのデバイスがモバイル テクノロジーに移行しているため、携帯電話基地局への需要が高まっており、同時に数千件の接続要求が発生する可能性があります。この負荷を管理するために、無線システムは、チャネルごとに非常に多くのデバイスを処理し、あるチャネルのデバイスが別のチャネルのデバイスに干渉しないチャネルを使用して展開されます。

ただし、トラフィックの少ないチャネルを見つけるには時間がかかる場合があり、良好なチャネルを使用できるかどうかは、近くのデバイスや環境によって決まる場合が多くあります。チャネルの選択には試行錯誤が使用されるため、この非効率性によりエネルギー消費と実行時間が増加します。

機械学習アプリケーション

この問題に対処するため、米国国立標準技術研究所 (NIST) の研究者チームは、機械学習アルゴリズムのように動作する数式を開発しました。

基本的に、この式では試行錯誤ではなく、過去の経験に基づいてワイヤレス ネットワーク チャネルを選択します。システムは過去に外部要因に関連して選択された構成を持っていたため、同じ設定の方が機能する可能性が高くなると主張することもできます。このようなシステムが必要なのは、モバイル ネットワークがライセンス バンドとライセンス不要バンドの両方を使用する License Assisted Access と呼ばれるソリューションを導入しているからです。つまり、同じデバイスを使用する Wi-Fi デバイスとセルラー デバイスの両方がある環境では、チャネル上で競合することになり、チャネルの検出が遅くなることになります。

したがって、両方のアンテナ (Wi-Fi とモバイル) が機械学習のような式を使用して適切なチャネルを見つける場合、アンテナは独立して動作して最適なソリューションを見つけることができます。コンピューターシミュレーションによれば、存在する送信機やチャンネルの数などの環境条件をマッピングするこの公式により、試行回数が45,000回から10回に減り、速度が5,000倍になる可能性があるという。

機械学習は環境に適応できるため、時間の経過とともにパフォーマンスを向上させることができます。このようなアルゴリズムは、オーディオやビデオのアプリケーションに限定される必要はありません。理論的には、あらゆるプロセスを改善できます。したがって、エンジニアは設計を検討し、試行錯誤が必要な状況を特定し、それを学習アルゴリズムに置き換えることができるかどうかを確認する必要があります。

<<:  AIが教育技術分野にもたらす変化 パーソナライズされた学習が従来の教育方法を超える

>>:  機械学習で大規模なデータセットを処理する方法

ブログ    
ブログ    
ブログ    
ブログ    

推薦する

...

「人工知能のゴッドファーザー」ジェフリー・ヒントン氏は再び警告した。AIが人間に取って代わるかもしれない

10月10日、「人工知能のゴッドファーザー」として知られるジェフリー・ヒントン氏は、人工知能は危険で...

人工知能を軸に:現代の情報管理の力を解き放つ

情報の海の中で、価値ある洞察を見つけることが重要です。最新の情報管理は、高度なテクノロジーと革新的な...

Pangu-Agentの5つのイノベーション

大規模言語モデル (LLM) の開発と応用により、人工知能の分野で LLM ベースの自律エージェント...

Google の時間は残りわずか: 18 歳の従業員が辞職し、経営陣を非難

インターネット企業の中で、Google は間違いなく勝者であり、方向性をリードする企業です。同社の技...

DeepSpeed ZeRO++: ネットワーク通信を4倍削減し、大規模モデルやChatGPTのようなモデルのトレーニング効率を大幅に向上

大規模な AI モデルがデジタルの世界を変えています。大規模言語モデル (LLM) に基づく Tur...

ダンスをしたり、音楽を作曲したり、演出したりできる AI を見たことがありますか?

最近、NVIDIA Blog は「ライト、カメラ、AI: Cambridge Consultants...

コグニティブコンピューティングによる運用・保守は効果的でしょうか?

[51CTO.com からのオリジナル記事] 人工知能は最近とても人気があります。人々の焦点は、A...

自然言語処理が人工知能の中核である理由

コンピュータが人間を騙して自分は人間だと信じ込ませることができるなら、そのコンピュータは知的であると...

人工知能医療機器業界は前進する

[[443093]]新世代の人工知能技術の台頭は、医療業界にインテリジェント変革を実現するための新た...

NLP 70 年!スタンフォード大学のマニング教授が長文の記事を執筆:「基本モデルは10年でAGIになることができるか?」

過去 10 年間で、自然言語処理の分野は、単純なニューラル ネットワーク計算と大規模なトレーニング ...

C++ kmp アルゴリズム テンプレート コード解釈

C++ プログラミング言語でのテンプレートの適用は、比較的複雑な適用技術です。今日は、C++ kmp...

交通大学ACMクラス卒業生のGoogleでの新たな仕事:Excelの表の数式を自動で記述

[[433049]]数式ビルダーのテーブルバージョンが登場しました。交通大学の ACM クラスを卒業...

...

顔認識アクセス制御システムの登場により、私たちのプライバシーを誰が守るのでしょうか?

最近は「顔カード」、つまり「顔を売る」という言葉をよく耳にしますが、あなたの「顔」が身分証明書や電話...