ハッカーが徐々に人工知能システムに適応するにつれて、プログラマーも積極的に新しい保護手段を模索する必要があります。いたちごっこに終わりはありませんが、人工知能のおかげで、データセキュリティの防御力ははるかに強くなりました。 人工知能は2016年の最もホットな話題かもしれませんが、「人工知能」の定義も多くの論争を引き起こしています。人工知能を支持する人もいれば、危険だと考える人もいます。人間が人工知能の支配の奴隷になってしまうのではないかと心配する人もいます。しかし、モノのインターネットであろうと医療分野であろうと、人工知能が役割を果たし始めています。影響力とテクノロジー自体の観点から見ると、サイバーセキュリティは人工知能アプリケーションの次のホットスポットとなるでしょう。 今は人間対人間です。 サイバー攻撃は今日、企業、政府、機関にとって最大の脅威の一つとなっています。非営利団体の個人情報盗難リソースセンターは、2015年に1億7800万件の個人情報が漏洩し、2016年には情報漏洩がさらに頻繁になり、国土安全保障省やFBIも例外ではなかったと指摘した。 2016年のガートナー・サイバーセキュリティ&リスクサミットで、データ調査会社ガートナーのリサーチ担当副社長アール・パーキンス氏は、2020年のトップ10戦略予測について語り、脆弱性の99%が公開されていると指摘した。すごいですね。 残念ながら、ある程度の抵抗力を提供するためにファイアウォールに頼ることしかできませんが、ハッカーが本当に侵入しようとした場合、ファイアウォールではまったく阻止できません。今日の攻撃と防御の戦いは、人間が他者が何をするかを推測しているだけです。 人工知能はデータの安全を守るのに役立つのでしょうか? 最近のウェビナーで、認知モニタリング企業 Cognetyx の社長兼 CEO である Santosh Vanughis 氏は、人工知能がハッカーとの戦いにおいて強力な味方になる可能性があると示唆しました。人間は人工知能を訓練してさまざまな行動パターンを学習させ、人間のように異常を検出できるようにすることができます。 戦争の太鼓が鳴り響く 機械学習は、既存のデータから学習することで機能と戦略を継続的に改善することに重点を置いた人工知能の一部です。機械学習は一般ユーザーの行動に精通しており、わずかな逸脱も検出できます。たとえば、オフィスは明らかにテキサスにありますが、ログインしている従業員の IP アドレスはニューヨークを示しています。 AI は脅威を特定するための情報収集に加え、データを活用して自身の機能や戦略を改善することもできます。 人間と比べると、テクノロジーは信じられないほど強力です。ログイン、コンピュータの使用状況、システム インフラストラクチャなどの膨大な量の情報を人間が精査するのは困難です。人工知能は大量の情報を迅速かつ容易に処理し、1日24時間、週7日、年間365日稼働することができます。 AIはサイバーセキュリティの未来か? 民間企業はすでに人工知能システムを使い始めており、ホワイトハウスによれば、一部の政府機関もこの技術を導入しているという。なぜでしょうか? AI は構造化データを素早くスクリーニングできるため、多くの時間とコストを節約でき、非構造化データ、統計結果、テキスト、フレーズを深く読み取って学習できるためです。つまり、AI は国家機密を保護しながら納税者のお金を節約します。 しかし、抜け穴は存在します。ハッカーはあらゆる方法でマシンを破壊しようとし、密かに侵入するための未知の抜け穴を見つけようとします。最近では、企業がデータ侵害を発見するまでに数か月かかることが多く、その頃にはハッカーは機密データを持ち逃げしていることもあります。 それが人工知能に置き換えられれば、のんびりとデータを収集し、ハッカー自身がミスを犯すのを待つことになる。人工知能は、パスワードやログインアドレスの入力方法など、ハッカーによくある異常な行動を検出できます。いくつかの痕跡は簡単に見落とされますが、人工知能はそれを騙すことはできません。攻撃をロックオンすると、ハッカーを阻止するためにすぐに行動を起こします。 ヴァヌーキス氏は、どんなシステムでもハッキングされる可能性があると指摘している。サイバーセキュリティの終わりのないゲームでは、ハッカーは常に人工知能を含むシステムの弱点をテストしています。人工知能は人間がプログラミングした産物なので、必ず敗北する。人工知能は情報の統合と処理において非常に強力ですが、プログラミング時に人間が与えた能力を超えることはできません。 ハッカーが徐々に人工知能システムに適応するにつれて、プログラマーも積極的に新しい保護手段を模索する必要があります。いたちごっこに終わりはありませんが、人工知能のおかげで、データセキュリティの防御力ははるかに強くなりました。 |
<<: この記事は人工知能について最も分かりやすく解説しています:原理、技術、そして将来
>>: 人工知能の新たなブレークスルー:ニューラルネットワークが画像内の物体を自律的に識別できる
AI がビジネスの世界に導入されたとき、AI は顧客体験に革命をもたらすなど、顧客のニーズをよりよ...
私は Unix オペレーティング システムに関する知識を頻繁に学んでおり、Unix オペレーティング...
[[270607]]看護師は医療現場を問わず需要が高いです。米国労働統計局の報告によると、看護師の求...
利用できるアルゴリズムは多数あります。難しいのは、さまざまな種類の方法があり、それらの方法に拡張もあ...
たった今、国産オープンソースモデルのパラメータ数の記録がまた更新されました! 9月20日、上海人工知...
[51CTO.com クイック翻訳]人工知能を使用して画像上のピクセルシーケンスをテキストに変換する...
インターネット上に何気なく投稿された写真から、どれほどの情報が漏れてしまうのでしょうか?外国人ブロガ...
AI と機械学習は価値の高いデータに依存しているため、IT 部門はネットワーク内で何が起こっているか...
人工知能(AI)は1950年代に誕生し、3つの発展の波を経てきました。研究段階から大規模な産業化段階...
6 つの一般的なソート アルゴリズムの GIF アニメーションがあり、ソートの考え方をより簡単に理解...