人工知能の新たなブレークスルー:ニューラルネットワークが画像内の物体を自律的に識別できる

人工知能の新たなブレークスルー:ニューラルネットワークが画像内の物体を自律的に識別できる
海外メディアの報道によると、フィンランドのコンピューター科学者は神経生物学的手法を用いて人工知能研究で新たな進歩を遂げており、ディープラーニングニューラルネットワークは画像内の物体を75%の精度で自律的に識別できるという。

[[183504]]

人間の脳は素晴らしいです。何十年にもわたる研究を経ても、人間は未だに人間の脳の超高速計算速度を再現できていません。現在、コンピューター科学者が利用できる最も優れたツールはニューラル ネットワークです。このような大規模なコンピュータ ネットワークは、人間の中枢神経系と同様の方法で複雑な問題を解決するようにトレーニングすることができ、さまざまなレベルのニューロンを使用して問題のさまざまな部分を解決し、最終的にそれらを適切な答えに統合します。

問題は、そのようなニューラル ネットワークが問題を解決する方法を学習する前に、大量のデータ入力とトレーニングが必要になることです。たとえば、トレーニング データの優れたソースとしては、手動で注釈が付けられた 100 万枚の写真を含む視覚情報の巨大なデータベースである ImageNet があります。

これは「教師あり学習」と呼ばれますが、真の人工知能とは、ニューラル ネットワークが「教師なし学習」を自動的に完了する方法を学習する必要があることを意味します。フィンランドのスタートアップ企業Curious AIがまさに実現したいと考えているのは、まさにそれだ。

「人間の脳は、教師なし学習を多く行っています」と、ヘルシンキで開催された技術業界カンファレンス「スラッシュ 2016」で、キュリアス AI の最高技術責任者アンディ・ラスムス氏は語った。「赤ちゃんにスプーンとは何かを教える必要はありません。赤ちゃんは環境から学び、自動的に概念を形成します。」

「人間の脳は、物体に基づいて概念を形成するのが簡単です。これは心理学で『ゲシュタルト理論』として研究されてきました。人間の脳は、形、色、動き、パターンが似ているものをグループ化します。私たちが最初に行ったのは、ディープラーニング システムが人間の脳と同じように物体を分類できるようにすることでした。」

神経科学を人工ニューラルネットワークに応用する

神経科学では、レートコーディングと呼ばれる理論によれば、脳内のニューロンの発火率が高ければ高いほど、ニューロンはより活発になります。ニューロンは発火し続けます。 1980 年代に、科学者たちはニューロンが集まってさまざまな情報を表すことを発見しました。

この理論は「一時コーディング」と呼ばれます。理論によれば、ニューロンの発火のタイミングは重要であり、正確な発火のタイミングによって、何万ものニューロンの中からどのニューロンが同じグループに属するかが決まります。したがって、いくつかのニューロンが同時に発火し、事務用品の山の中にある赤い布切れなど、脳が物体の集合の中の特定の物体を認識するのを助けると同時に、ニューロンの別のサブセットが、他の物体が背景情報であることを脳に伝えます。

「私たちのコンピューターアルゴリズムには一時的なエンコードメカニズムが組み込まれています。ニューラルネットワークの各層に複数のコピーを保存します。ニューラルネットワーク全体は4回複製されます。つまり、システムは各コピーが特定のオブジェクトを表していることを学習でき、これらのオブジェクトを結合すると元の画像と一致する可能性があるということです」と、Nvidiaの元ソフトウェアエンジニアで、現在はフィンランドのアアルト大学でディープラーニングの博士研究を行っているラスムス氏は述べた。

「画像を4つの異なるグループに分割することで、ニューラル ネットワークは画像を独自にエンコードできます。これは教師なし学習であり、システムにラベルを付ける必要はありません。ニューラル ネットワークに画像を表示すると、自動的に画像が要素 (画像内のオブジェクトなど) に分解されます。」

ニューラル ネットワークが画像を個々の要素に分解すると、画像が重なってぼやけることがなくなるため、オブジェクトの分類と識別が容易になります。

知覚的グループ化はディープラーニングに革命をもたらす可能性がある

研究者らは、最初にニューラルネットワークに、教師なしで画像を分析し、オブジェクトを整理することを教え、次に画像にラベル付けされた情報を追加して(教師あり学習)、システムが何を学習したかを観察しました。その結果、Curious AI の Tagger システムは 75.1% の精度を達成できることがわかった。

比較すると、従来のニューラル ネットワークの精度はわずか 21% で、ランダムな推測よりもわずか 1% 高いだけです。

「これは、教師なし学習をさらに一歩進めた革命的な研究です」とラスムス氏は言う。「機械に物体の概念を与えることで、人間の脳にもっと近い教師なし学習を実現しています。これは、ニューラル ネットワークがより高度な推論を実行し、物体と環境の関連性を学習できるようにする将来の研究に役立つ可能性があります。」

「現在のシステムでは、コンピューターは統計的な視点で世界を捉えています。私たちが暮らす世界にコンピューターを導入したいのであれば、機械が人間のように世界を理解することが非常に重要です。人間の視覚は私たちにとってとても自然なことなので、コンピューターの視覚がなぜそれほど劣っているのか理解できないことがよくあります。」

同社の関連論文「Tagger: Deep Unsupervised Perceptual Grouping」は、12月7日にバルセロナで開催されるNeural Information Processing Systems 2016ディープラーニングカンファレンスで発表される予定だ。

Curious AI は、実際の AI システムでディープラーニング技術を試験的に導入する業界パートナーを募集しています。同社は現在、無人運転技術の開発を希望する自動車メーカーと連絡を取っている。 「画像を4つの異なるグループに分割することで、ニューラルネットワークは画像を独自にエンコードできます。これは教師なし学習であり、システムにラベルを付ける必要はありません。画像をニューラルネットワークに表示すると、自動的に画像を要素(画像内のオブジェクトなど)に分割します。」ニューラルネットワークが画像を個別の要素に分割すると、オブジェクトが互いに重なり合ってぼやけた画像になることがなくなるため、オブジェクトの分類と識別が容易になります。 知覚的グループ化はディープラーニングに革命を起こす可能性があります。研究者は最初に、ニューラル ネットワークに、教師なしで画像を分析し、オブジェクトを整理する方法を教え、次に、システムが学習した内容を観察するために、画像にラベル付けされた情報を追加しました (教師あり学習)。その結果、Curious AI の Tagger システムは 75.1% の精度を達成できることがわかった。 比較すると、従来のニューラル ネットワークの精度はわずか 21% で、ランダムな推測よりもわずか 1% 高いだけです。 「これは革命的な研究であり、教師なし学習をさらに一歩進めたものです」とラスムス氏は言う。「機械に物体の概念を与えることで、人間の脳に似た教師なし学習を実現しています。これは、ニューラル ネットワークがより高度な推論を実行し、物体と環境の関連性を学習できるようにする将来の研究に役立つでしょう。」 「現在のシステムでは、コンピューターは統計ベースの世界観で動作します。コンピューターを人間の住む世界に入れたい場合、機械が人間のように世界を理解することが非常に重要です。人間の視覚は私たちにとって非常に自然なため、コンピューターの視覚がなぜそれほど貧弱なのかを理解するのは難しいことがよくあります。」 同社の対応する論文「Tagger: Deep Unsupervised Perceptual Grouping」は、12 月 7 日にバルセロナで開催される「Neural Information Processing Systems 2016」ディープラーニング カンファレンスで発表される予定です。 Curious AI は、実際の AI システムでディープラーニング技術を試験的に導入する業界パートナーを募集しています。同社は現在、無人運転技術の開発を希望する自動車メーカーと連絡を取っている。

<<:  ファイアウォールではできないことを人工知能で実現できるでしょうか?

>>:  機械に記憶を与える: DeepMind の主要研究は柔軟な重み統合アルゴリズムを提案

ブログ    

推薦する

...

人工知能に関する12の有名な引用

[[321443]]アラン・チューリング(1912-1954)は、人工知能の概念を真剣に受け止めた最...

人工知能やビッグデータ製品の開発において、特に注意すべき点は何でしょうか?

近年、人工知能は科学技術の発展の重要な方向となっており、ビッグデータの収集、マイニング、応用の技術は...

...

2020年職場のAIスキルランキング:TensorFlowが人気上昇、Pythonが最も人気、マーケティング部門も学習中

2020年まで残り1ヶ月となりました。最近、オンライン教育ウェブサイトのUdemyは、受講生のコース...

アフリカはパンデミックの最中に包括的な接続性を構築しており、明確な投資方針を持っている

テクノロジーと通信の急速な進歩により、自動化革命の時代において、アフリカの大規模かつ急成長中の人口は...

LeCun 氏はリツイートしました: 中国がトップ AI カンファレンスのリストで首位を占め、米国が 2 位です!中国と米国が世界の数学計算分野を支配している

最近、「科学は戦略だ」というネットユーザーが、近年いくつかの海外の主要メディアや調査機関がまとめたグ...

プログラミングに熟練する必要はありません。人工知能への参入は思っているより簡単です

この記事は公開アカウント「Reading Core Technique」(ID: AI_Discov...

...

...

人類はついに怠惰なAIを生み出してしまった…

強化学習 (RL) の概念を説明する記事は多数ありますが、現実世界で RL を実際に設計して実装する...

...

再ハッシュ: ブルームフィルタアルゴリズムの実装原理を理解する

[[385658]]この記事では、広く使用されているアルゴリズムである「ブルーム フィルター アルゴ...

...

新たなブレークスルー:科学者が脳のようなナノワイヤネットワークを開発し、AIが人間のリアルタイム学習と記憶を模倣できるようにする

11月3日、研究者らは脳内の神経ネットワークを模倣することで動的に学習し記憶できる物理的なニューラル...