機械学習アプリケーションが増加するにつれて、多くの人が機械学習トレーニング データを使用する利点を理解する必要があります。
機械学習をベースにしたシステムを使用する場合は、トレーニング データに関する知識が必要です。データをモデルトレーニング用に AI モデルにロードする前に、データが正しくフォーマットされ、その正確性が確保されている必要があります。 パブリック クラウドで一般的な機械学習システムを使用して不正検出エンジンを作成しているとします。まず、モデルをトレーニングするためのデータセットを作成する必要があります。この場合は、不正とマークされた何百万もの取引記録です。このようにして、モデルはどれが不正である可能性があり、どれがそうでないかを学習できます。もちろん、トレーニング データにはさまざまな種類があり、ラベル付きのものもあれば、ラベルなしのものもあります。 一度トレーニングすると、モデルは経験を通して学習するのではなく、起こりうる不正行為について学習することでトレーニングを継続できます。ユーザーに時間があれば、人間や他のシステムによって不正とフラグが付けられた取引を監視することで、モデルが自らトレーニングすることができます。 この AI トレーニング方法の印象的な点は、ユーザーが完全なトレーニング データセットを必要とすることです。場合によっては、トレーニング データはパブリック プロキシまたは独自のプロキシから取得できます。ほとんどの場合、ユーザーは機械学習モデルのトレーニング用に独自のデータをフォーマットできます。しかし、いつでもどこでもトレーニングできる機械学習モデルはあるのでしょうか? この考えは新しいものではありません。 AIが登場して以来、人々はAIエンジンが別のAIエンジンを教える、つまりトレーニングデータを共有することを望んできました。あるいは、自動化された直接的なやり取りを通じて知識と経験を共有するのがさらに良いでしょう。あるいは、AI エンジン メンターを通じて外部の経験を提供し、AI モデルの価値と効果を高めます。 これは言うのは簡単ですが、実行するのは難しいです。機械学習エンジンは、同じソフトウェアを使用している場合でも、通常は相互に通信しません。独立した学習者向けに、また AI 以外のシステムや人間と対話できるように、ゼロから設計する必要があります。ただし、ほとんどのベンダーは AI エンジン間のトレーニングを行っています。 近い将来、ゲームチェンジャーとなる可能性のあるいくつかの大きなトレンドが見られるでしょう。
私がこのことを取り上げる理由は、機械学習やディープラーニングを含む AI からより多くの価値を得たいのであれば、ほとんどの企業がこれらのトレンドを理解する必要があるからです。さらに、多くの企業は、機械学習を適切に機能させるのに十分なトレーニングデータがないことに苦労しています。これは両方の問題に対する良い解決策となるかもしれません。 |
<<: RPA大手UiPath独占インタビュー:やがて「1人1台ロボット」の時代が到来
>>: 景気後退は大きな不確実性をもたらします。AIに投資する際に理解すべき重要なポイントは何でしょうか?
時計職人の片眼鏡から、絵を描くのに便利な「ルシーダカメラ」まで、職人たちは光学技術を使って感覚を高め...
「AIは多くのリソースを消費し、強力なコンピューティング能力を必要とし、規模の経済性を反映する技術...
[[433465]]みなさんこんにちは。私は Python の専門家です。この記事のタイトルを考え...
現在、世界の人工知能分野には、業界で「神のような存在」とみなされるトップの専門家が3人いる。そのうち...
導入ソートとは、データのセットを指定された順序で並べるプロセスです。分類カテゴリ内部ソート: ソート...
近年、インターネット金融の波は伝統的な金融業界に課題をもたらしています。同時に、伝統的な金融企業の情...
この記事では、CVPR 2022 最優秀学生論文賞を受賞した私たちの研究「EPro-PnP: 単眼物...
今年、業界内では「AI 記者会見でない記者会見はない」というジョークが飛び交っています。まさにその通...
この記事はLeiphone.comから転載したものです。転載する場合は、Leiphone.com公式...
AI は、複雑なデータセットを迅速に解析し、そのデータに基づいて洞察を生成することで、企業が IT...
[[425184]] TensorFlow は最も広く使用されている機械学習フレームワークの 1 つ...
Oracle データベースでは、初期化パラメータは非常に重要な構成項目であり、データベースのパフォ...