SMOTE アルゴリズムを使用せずに、マルチクラスの不均衡なデータをどのように処理できますか?

SMOTE アルゴリズムを使用せずに、マルチクラスの不均衡なデータをどのように処理できますか?

この記事は、公開アカウント「Reading the Core」(ID: AI_Discovery)から転載したものです。

機械学習における一般的な問題は、ターゲット クラスに非常に不均衡な量のデータが存在する、不均衡なデータを処理することです。

[[344863]]

マルチクラス不均衡データとは何ですか?

分類問題の対象クラス(2 つ以上)が均等に分布していない場合、不均衡データと呼ばれます。この問題が適切に処理されない場合、クラスの不均衡なデータを使用したモデリングは多数派クラスに偏るため、モデルは惨事になります。不均衡なデータに対処するにはさまざまなアプローチがありますが、最も一般的なのはオーバーサンプリングと合成サンプルの作成です。

SMOTE アルゴリズムとは何ですか?

SMOTE は、データセットから合成例を生成するオーバーサンプリング手法であり、少数派クラスの予測力を向上させます。情報の損失はありませんが、いくつかの制限があります。

合成サンプル

制限:

  • SMOTE は高次元データには適していません。
  • クラスの重複が発生し、データにノイズがさらに発生する可能性があります。

したがって、この問題を回避するには、「class_weight」パラメータを使用してクラスに手動で重みを割り当てることができます。

クラスの重みを使用するのはなぜですか?

クラスの重みは、異なる重みを持つクラスにペナルティを課すことで損失関数を直接変更し、少数クラスのパワーを意図的に増加させ、多数クラスのパワーを減少させます。したがって、SMOTE よりもうまく機能します。この記事では、不均衡な学習問題に適したデータの重みを取得するための最も一般的な手法をいくつか紹介します。

(1) Sklearnユーティリティ

クラスの重みは、sklearn を使用して取得および計算できます。モデルをトレーニングする際にこれらの重みを少数クラスに追加すると、クラスの分類パフォーマンスが向上します。

  1. sklearn.utilsからclass_weightをインポートします。class_weight class_weight = class_weight.compute_class_weight('balanced,
  2. np.unique(ターゲット_Y)、
  3. target_Y)モデル= LogisticRegression ( class_weight class_weight = class_weight)
  4. model.fit(X,target_Y) # ['balanced', 'calculated balanced', 'normalized'] は操作できるハイパーパラメータです。

ロジスティック回帰から Catboost まで、ほぼすべての分類アルゴリズムには、class_weight パラメーターがあります。しかし、XGboost はバイナリ分類には scale_pos_weight を使用し、バイナリおよびマルチクラスの問題には sample_weight を使用します。

(2)数と長さの比

非常に簡単です。行数を各クラスのカウント数で割るだけです。

  1. 重み= df [target_Y].value_counts()/len(df)
  2. モデル= LGBMClassifier ( class_weight = weights )model.fit(X,target_Y)

(3)ウェイトを滑らかにする

これは重量を選択する最良の方法の 1 つです。 labels_dict は各クラスのカウントを含む辞書オブジェクトであり、対数関数は不均衡なクラスの重みを平均化します。

  1. 定義class_weight(labels_dict, mu = 0.15 ):
  2. 合計= np .sum(labels_dict.values())キー= labels_dict .keys()重み= dict () i がキーに含まれる場合:
  3. score = np .log(mu*total/float(labels_dict[i])) weight[i] = score if score > 1else 1return weight# random labels_dict
  4. labels_dict = df [target_Y].value_counts().to_dict() weights = class_weight (labels_dict) model = RandomForestClassifier ( class_weight = weights )
  5. モデルをフィット(X,target_Y)

(4)サンプル重み戦略

以下の関数は、XGboost アルゴリズムのサンプル重みを取得するために使用される class_weight パラメータとは異なります。トレーニング例ごとに異なる重みを返します。サンプルの重みは、データと同じ長さの配列で、各サンプルに適用されたモデル損失の重みが含まれます。

  1. バランスサンプル重みを定義します(y_train、クラス重み係数):
  2. クラス= np .unique(y_train、= 0 )
  3. classes.sort() class_samples = np .bincount(y_train) total_samples = class_samples .sum() n_classes = len (class_samples) weights = total_samples / (n_classes * class_samples * 1.0)
  4. class_weight_dict = {key : value for (key, value) in zip(classes, weights)}
  5. class_weight_dict[クラス[1]] = class_weight_dict[クラス[1]] *
  6. class_weight_coefsample_weights = [class_weight_dict[i] y_train 内の i について]
  7. return sample_weights#使用方法
  8. 重み= BalancedSampleWeights (target_Y、class_weight_coef)
  9. モデル= XGBClassifier (サンプルの重み= 重み )
  10. モデルをフィット(X, ターゲットY)

(5)クラス重みとサンプル重み:

サンプルの重みは、各トレーニング サンプルの重みを提供するために使用されます。つまり、トレーニング サンプルとまったく同じ数の要素を持つ 1D 配列を渡す必要があります。クラスの重みは、各ターゲット クラスに重みを提供するために使用されます。つまり、分類するクラスごとに 1 つの重みを渡す必要があります。

これらは、分類器のクラス重みとサンプル重みを見つけるためのいくつかの方法です。これらのテクニックはすべて私のプロジェクトで機能したので、ぜひ試してみてください。きっと大いに役立つでしょう。

<<:  精密人工知能:原子核物理学と素粒子物理学における新たな力

>>:  95歳のハーバード大学出身者が、機械学習をゼロから始めるための必読書を執筆しました。本のリソースは現在公開されています。

ブログ    

推薦する

ライブ放送室で見る高解像度1080Pは720Pほど良くないかもしれない

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

PS効果よりも優れています!このような写真編集ツールを使ったことがありますか?

そうです、グラフィックカードを作っている会社、NVIDIA です。 NV はグラフィック カード メ...

AIがハイパフォーマンスコンピューティングから学べる7つの教訓

効果的な IT 組織は、ハイパフォーマンス コンピューティング (HPC) から教訓を得て、システム...

人工知能はパーキンソン病の初期段階を治療できるかもしれない

おそらく多くの友人は、パーキンソン病が世界中で 1,000 万人以上の人々を悩ませている神経変性疾患...

AIシステムのグレーディングを通じて企業のコスト管理を支援

翻訳者 | 張毅校正 | 梁哲、孫淑娟自動車技術協会(SAE)が自動運転車を分類しているのと同じよう...

河南省鄭州市:自動運転オンライン配車サービス車両が一般公開

[[408894]]河南省鄭州市では7月1日、鄭東新区で自動運転バスと自動運転乗用車が運用開始され、...

...

ChatGPT が作成した履歴書が人事部の心を動かし、彼は卒業後すぐに夢のオファーを獲得しました。

こんにちは、最近卒業した人が ChatGPT を使用してカバーレターを作成し、数分で履歴書のスクリー...

...

北京、自動運転路上試験の新規則を発表、有人試験も可能に

最近、北京市交通委員会は新たに改訂された「北京市自動運転車両路上試験管理実施規則(試行)」を発行し、...

Ant Marketingの推奨シナリオにおける因果修正法

1. 因果修正の背景1. 逸脱の発生推奨システムは、収集されたデータに基づいて推奨モデルをトレーニン...

ChatGPT が 1 周年を迎えました: 革新、論争、AI のブレークスルーの 1 年

テクノロジーの世界を永遠に変えたかもしれない GenAI チャットボットである OpenAI の C...

人工知能がヘルスケア業界にもたらす変化

AIヘルスケア企業のCEOが、医療におけるAIの応用、AIソリューションの購入方法、ヘルスケア分野に...

AIを活用して企業に利益をもたらすにはどうすればいいでしょうか?答えはすべてあなたのためにあります

人工知能 (AI) と機械学習 (ML) は成長サイクルのピークにあるかもしれませんが、だからといっ...