基本に立ち返る: 一歩先を行くために読むべき 5 つのデータ サイエンス論文

基本に立ち返る: 一歩先を行くために読むべき 5 つのデータ サイエンス論文

この記事は公開アカウント「Reading Core Technique」(ID: AI_Discovery)から転載したものです。

この記事では、データ サイエンス ワークフローのオーケストレーションから、より高速なニューラル ネットワークのブレークスルー、問題を解決するための基本的な統計手法の再考に至るまで、最近の最も重要な開発と影響力のあるアイデアをいくつか取り上げ、これらのアイデアを仕事に適用する方法も紹介します。

[[348575]]

1. 機械学習システムにおける隠れた技術的負債

リンク:

https://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf

Google リサーチ チームは、データ サイエンス ワークフローを作成する際に避けるべきアンチパターンについて明確な指示を提供します。この論文では、ソフトウェア エンジニアリングの技術的負債の比喩を借用し、それをデータ サイエンスに適用します。

画像出典: DataBricks

次の論文では、機械学習製品の構築がソフトウェア エンジニアリングの専門分野である理由と、この分野から得られる教訓の多くがデータ サイエンスにも当てはまる理由について詳しく説明します。

使用方法: 専門家からの実用的なヒントに従って、開発と生産を効率化します。

2. ソフトウェア 2.0

リンク: https://medium.com/@karpathy/software-2-0-a64152b37c35

Andrej Karpathy 氏の古典的な記事では、機械学習モデルはデータに基づくコードのソフトウェア アプリケーションであるというパラダイムが明確に示されました。データ サイエンスがソフトウェアであるなら、私たちは何を構築しているのでしょうか? Ben Bengafort は、影響力のあるブログ投稿「データ製品の時代」でこの疑問を探求しています。

(https://districtdatalabs.silvrback.com/the-age-of-the-data-product)

[[348576]]

データ プロダクトは、ML プロジェクトの運用化段階を表します。

使用方法: データ製品がモデル選択プロセスにどのように適合するかについて詳しく学習します。

3. BERT: 言語理解のためのDeepBidirectional Transformersの事前トレーニング

リンク: https://arxiv.org/abs/1810.04805

この論文では、Google の研究チームが、テキスト分析機能の大幅な改善を実現する自然言語処理モデルを提案しました。 BERT がなぜそれほど効果的なのかについては議論がありますが、これは、機械学習の分野では、その仕組みを完全に理解することなく、いくつかの成功する方法が見つかるということを思い出させてくれます。自然そのものと同様に、人工ニューラル ネットワークも謎に包まれています。

使い方:

  • BERT の論文は非常に読みやすく、初期段階で使用するための推奨されるデフォルトのハイパーパラメータ設定がいくつか含まれています。
  • NLP が初めてでもそうでなくても、Jay Alammar の「BERT のビジュアル ファーストタイム ガイド」を読んで、BERT の機能を学んでください。
  • また、仕事で BERT を簡単に実装するのに役立つ Keras (および TensorFlow) のコンポーネントである ktrain もチェックしてください。 Arun Maiya は、NLP、画像認識、グラフ理論手法の学習を加速するためにこの強力なライブラリを開発しました。

4. 宝くじ仮説: 疎で訓練可能なニューラルネットワークの発見

リンク: https://arxiv.org/abs/1803.03635

NLP モデルがますます大きくなるにつれて (GTP-3 の 1,750 億のパラメータを参照)、より小型で高速かつ効率的なニューラル ネットワークを直交的に構築する取り組みが行われています。このようなネットワークは、運用にかかる時間が短く、トレーニング コストが低く、必要なコンピューティング リソースも少なくなります。

この独創的な論文では、機械学習の天才であるジョナサン・フランクルとマイケル・カービンが、最初はかなり大きいニューラルネットワークでも、スパースなサブネットワークで同様のパフォーマンスを達成できることを示す剪定方法を概説しています。

ノーラン・デイの「宝くじ分解仮説」

宝くじは効能と非常に強いつながりがあることを意味します。この発見は、ストレージ、実行時間、計算パフォーマンスにおいて多くの利点をもたらし、ICLR 2019 で最優秀論文賞を受賞しました。さらなる研究によりこの技術が構築され、その適用可能性が確認され、元のスパース ネットワークに適用されました。

使い方:

  • 実稼働前にニューラル ネットワークのプルーニングを検討してください。ネットワークの重みをプルーニングすると、初期ネットワークと同じパフォーマンスを維持しながら、パラメータを 90% 以上削減できます。
  • また、Data Exchange ポッドキャストのこのエピソードもご覧ください。Ben Lorica が Neural Magic に、柔軟なユーザー インターフェイスでプルーニングや量子化などの手法を使用してスパース抽出を簡素化する取り組みについて語っています。 (https://neuralmagic.com/about/)

5. 帰無仮説の統計的検定の死の支配から解放する(p < .05)

リンク:

https://www.researchgate.net/publication/312395254_Releasing_the_death-grip_of_null_hypothesis_statistical_testing_p_05_Applying_complexity_theory_and_somewhat_precise_outcome_testing_SPOT

仮説検定はコンピュータが使用される前から存在していました。このアプローチに関連する課題(たとえば、統計学者でさえ p 値を解釈するのはほぼ不可能である)を考えると、Slightly Precise Outcome Test(SPOT)などの代替案を思いつくには時間がかかるかもしれません。

xkcdの重要性

使用方法: このブログ投稿「統計的仮説検定の終焉」をご覧ください。そこでは、不満を抱く統計学者が、従来の方法に関連するいくつかの課題を概説し、信頼区間を使用する別の方法を説明しています。

(https://www.datasciencecentral.com/profiles/blogs/the-death-of-the-statistical-test-of-hypothesis)

これら 5 つの論文は、データ サイエンスの理解を深めるのに役立ちます。

<<:  IT プロフェッショナルが CIO に人工知能について知ってほしい 9 つのこと

>>:  ついに! SM2 国家暗号アルゴリズムが Linux カーネル コミュニティに承認されました

ブログ    
ブログ    

推薦する

ハードコア情報 | 顔認識の原理とは?

[[408210]]今では「顔認証で出勤、顔認証で支払い、顔認証でドアを開ける」といったハイテクノ...

ドローンを使って「国勢調査」を実施?人だけでなく動物も!

データによれば、我が国の人口は過去 10 年間にわたり緩やかな増加傾向を維持し続けており、我が国は依...

データセンター冷却のための人工知能: 単なる夢物語ではない

現在、AI はデータセンターのあらゆる場所に存在し、ネットワークの管理と保護、アラートのフィルタリン...

ベクトルデータベースは AI をどのように改善するのでしょうか?

翻訳者 |ブガッティレビュー | Chonglou事前トレーニング済みのAIモデルがすぐに利用できる...

NLP の学習を始める準備ができました。体系的に読むべき本やコースは何ですか?

私は、機械学習コミュニティで手動の特徴エンジニアリングが非常に人気があった 2013 年から自然言語...

速報、AI専門家のJing Kun氏がBaiduを退社! CIOの李英がXiaoduのCEOに就任

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

人工知能技術の発展の概要

[[352219]]人工知能は、コンピュータサイエンス業界のトップテクノロジーの一つとして、1956...

AI 転移学習はどのように機能しますか? AI モデルとトレーニング プロセスでどのような役割を果たすのでしょうか?

今日、AI プログラムは、写真やビデオ内の顔や物体を認識し、音声をリアルタイムで書き起こし、X 線ス...

Python による画像前処理の完全ガイド

機械学習やコンピューター ビジョンのプロジェクトで、画像の品質が低いという問題に遭遇したことはありま...

...

顔認識エンジンのトップ 5 (テキストにイースター エッグあり)

[51CTO.com クイック翻訳] ご存知のとおり、顔の特徴は指紋ほどユニークで永続的ではありま...

機械学習アルゴリズムは簡単に詐欺を検出できるので、詐欺を恐れる必要はありません。

実のところ、誰もが詐欺防止を必要としているわけではありません。金融機関が最新の犯罪手法に追いつこうと...

...

...