アルゴリズムは AI の進歩の原動力となることができるでしょうか?

アルゴリズムは AI の進歩の原動力となることができるでしょうか?

2006年以降、ディープラーニングに代表される機械学習アルゴリズムは、マシンビジョンや音声認識などの分野で目覚ましい成果を上げ、認識精度が大幅に向上しました。人工知能の発展の核心的な原動力は何かという問いは、学界や産業界から注目を集めています。

[[349784]]

アルゴリズムが存在する前提はデータ情報であり、アルゴリズムの本質はデータ情報の取得、保有、処理、そしてそれを基にした新たなデータや情報の生成にあります。言い換えれば、アルゴリズムとは、データ情報または獲得したすべての知識を変換して再現するプロセスです。近年、AI技術の研究開発が加速し続け、その応用シナリオがますます豊かになるにつれて、その背後にあるアルゴリズム、コンピューティングパワーなどの要素が関係者の注目を集め始めています。

現在、アルゴリズム、ビッグデータ、機械学習、人工知能などを中核とする自動意思決定システムの応用がますます広まっています。買い物の推奨、保険の評価、パーソナライズされたコンテンツの推奨から、司法手続きにおける犯罪リスク評価まで、ますます多くの意思決定作業が機械、アルゴリズム、人工知能に置き換えられています。アルゴリズムは、人間社会のさまざまな事柄や意思決定作業に客観性をもたらすことができます。

データ生成に関しては、AI モデルのトレーニングはデータに依存しますが、これは現時点では問題ではありません。ただし、AI モデルのトレーニングは手動でラベル付けされたデータに依存しており、これが頭痛の種となっています。アルゴリズムを使用して、手動でラベル付けされたデータに対するモデルトレーニングの依存を効果的に解決するか、大幅に削減することは、注目されている研究分野です。

AIの3大要素の一つとして、現在主流のアルゴリズムは主に機械学習の分野を対象としています。したがって、機械学習は、トレーニングと推論に使用されるアルゴリズムの集合として理解することもできます。現在の世界のAI分野の発展状況を見ると、ディープラーニングが従来の機械学習を凌駕し、主流のアルゴリズムとなっていることがわかります。しかし、機械学習が置き換えられたわけではなく、両者は補完し合っています。ディープラーニングとニューラルネットワークアルゴリズムの組み合わせにより、アルゴリズムトレーニングの敷居が下がり、多数の人気アルゴリズムとそれに対応する基盤フレームワークも登場しました。

AI技術を必要とする企業にとって、適切なアルゴリズムが見つからない、AI導入コストが高い、アルゴリズムの統合や開発が難しいなどの問題が、インテリジェントプロセスへの大きな障害となっています。これらの障害を取り除き、適切なアルゴリズムを見つけ、低コストで継続的なアフターサービスと技術サポートを得る方法が、AI 需要のある企業を選択する上で徐々に重要な指標になってきています。

ネットワークの防御とセキュリティの面では、アルゴリズムがますます重要な役割を果たしています。ネットワーク攻撃の検出では、機械学習アルゴリズム モデルを使用すると、悪意のある動作の検出精度を向上させることができます。同時に、ネットワーク攻撃と防御にアルゴリズム モデルを使用すると、ネットワーク リソースの割り当てを最適化し、ネットワーク セキュリティ保護の全体的な有効性を向上させることができます。

ディープラーニングや強化学習に代表されるアルゴリズムモデルの革新は、知能戦闘技術の中核的フロンティアとして、今後、さまざまな分野で広く利用されることは間違いありません。特に注目すべきは、人工知能時代の長期的かつ健全な発展には、画像アルゴリズムの人材がさらに必要となることです。

現在、中国には3Dを通じて情報を取得できるプラットフォームがあります。これらのプラットフォームは、人々に3D情報を示すだけでなく、3Dを通じて人々が現実世界をよりよく理解するのにも役立つはずです。コンピューター画像やコンピューター ビジョン アルゴリズムに関する才能は、さまざまなコンピューター ビジョン アルゴリズムの助けを借りてこの目標を達成する上で重要な力となるでしょう。

我が国の人工知能開発は、データ規模やアルゴリズムの統合・応用の面では世界最先端ですが、人工知能の基礎計算能力の面では、国内の計算能力サポートを提供できる企業は多くありません。人工知能をサポートするコンピューティングパワーの面では、HPE、IBM、Dell などの国際大手が世界のサーバー市場で確実に上位 3 位を占めていますが、Inspur、Lenovo、H3C、Huawei などの国内企業の市場シェアは限られています。今後、関連企業がより大きな製品利益を獲得し、国家競争力を向上させたいのであれば、技術革新、プラットフォーム構築などに一層力を入れる必要があるだろう。

デジタル経済は経済構造の最適化と経済効率の向上に向けた重要な原動力となっている。人工知能に代表される数多くの革新技術とアプリケーションは、デジタル経済時代の重要な礎として、伝統経済の変革とアップグレード、新興経済の急速な成長を促進するだろう。将来的には、人工知能、モノのインターネット、インダストリアルインターネットなどの技術が、デジタル経済の成長をより強固にサポートするでしょう。

<<:  科学技術の力を感じる: 人工知能とスマートヘルスケアの 4 つの注目のアプリケーションの分析

>>:  ディープラーニングのための 5 つのニューラル ネットワーク モデルとその応用

ブログ    

推薦する

...

自動運転技術はすでにかなり成熟しているのに、なぜまだ普及していないのでしょうか?この技術を待っている

自動運転技術は人類社会の未来を変える科学技術であり、私たちの生活にどんどん浸透し、すでに多くの自動運...

AlphaFold2 は大きな貢献をしました!清華大学チームがディープラーニングでCOVID-19抗体を強化し、AIの画期的な成果を生み出す

2020年末、DeepMindが開発した第2世代ディープラーニングニューラルネットワークであるAlp...

いくつかの特徴選択方法を比較すると、どれが優れているでしょうか?

[[403820]]この記事はWeChat公式アカウント「DATA STUDIO」から転載したもの...

GenAI が CIO にとって悪夢である理由とその解決方法

GenAI が現代の企業にとって非常に魅力的な理由は理解できます。これは、世界中のさまざまな業界で無...

...

GenAI の成功への道における 10 の「落とし穴」

生成型人工知能 (GenAI) を実装したいですか? 朗報です! ほとんどの IT 意思決定者は、こ...

人工知能がファッションデザインと生産を変革

人工知能とロボット工学がファッション業界に変化をもたらしています。市場分析からカスタムデザイン、無駄...

...

...

OpenAIがChatGPTに「ドラゴン退治のテクニック」を直接教える!公式のヒントエンジニアリングガイドはこちら

Prompt プロジェクトをどのように説明すればよいでしょうか? ChatGPT を初めて使用する初...

2021 年のトップ 10 機械学習ライブラリ

今は人工知能爆発の時代です。AIと機械学習は広く普及しています。もちろん、機械学習の分野で最も人気の...

Volcano Engineがビヨンドのクラシックコンサートを超高解像度で復元、その技術的能力が一般公開される

7月3日夜、TikTokはユニバーサルミュージック傘下のレーベル、ポリグラムと提携し、ボルケーノエン...

インテル子会社が自動運転向け5nm RISC-Vプロセッサをリリース

CES(コンシューマーエレクトロニクスショー)がラスベガスで盛況だ。インテル、マイクロソフト、グーグ...