現実世界の問題を解決するための 4 つの機械学習戦略

現実世界の問題を解決するための 4 つの機械学習戦略

広く認識されている機械学習の形式には、教師あり学習、教師なし学習、半教師あり学習、強化学習の 4 つがあります。これらの形式は研究文献で広範囲に研究されてきました。これらは、機械学習アルゴリズムに関するほとんどの入門コースにも含まれています。次の表は、これら 4 つの形式をまとめたものです。

しかし、あまり知られていない概念が機械学習戦略です。これは、基本的な機械学習アルゴリズムを創造的な方法で使用して現実世界の問題を解決することです。私はこれらの戦略に魅了されました。この記事では、オンライン学習、転移学習、アンサンブル学習、ディープラーニングという 4 つの戦略について説明します。幸いなことに、これら 4 つの戦略は、表にあるあらゆる形式の機械学習に適用されます。

1. オンライン学習

オンライン学習では急速に変化するデータが使用されます。このタイプのモデルはデータでリアルタイムに更新され、以前のデータは保存されません。一部のオンライン学習アルゴリズムは「適応」、つまりデータの変化を追跡するためにいつでもモデルを調整することもできます。具体的には、古くなったデータを徐々に「忘れる」ため、環境やモデルが時間の経過とともに変化するアプリケーションに適しています。バッチ (またはオフライン) 学習では静的データを使用し、オンライン学習のウォームアップとして使用できます。バッチ学習では、モデルは一度にすべてのデータから学習します。多くのオンライン学習アルゴリズムでは、開始前にモデルをウォームアップするためにバッチ/オフライン アルゴリズム (少量のデータ バッチに基づく) を使用します。このアプローチにより、アルゴリズムの収束が大幅に高速化されます。

2. 転移学習

転移学習は、あるドメインの知識を別のドメインに適用します。古いデータ、モデル、パラメータを使用して新しい問題を解決します。これは、機械学習モデルの生涯学習にとって非常に重要です。転移学習は人間が生まれながらに持つ能力です。たとえば、すでに習得した言語知識(語彙、文法など)を新しい言語の学習に応用します。 2 つの言語が近いほど、知識の伝達が容易になります。

3. アンサンブル学習

単一学習者モデルでは 1 つの学習者 (アルゴリズム) のみが使用されますが、アンサンブル学習では複数の学習者が使用されます。一般的なアンサンブル アルゴリズムには、勾配ブースティング、ガイド付き集約、決定フォレスト、スタック アンサンブル、スーパー ラーナーなどがあります。アンサンブル学習では、比較的弱い学習者 (多くの場合、予測精度はランダムな推測よりもわずかに優れているだけ) を組み合わせて、強力で正確なモデルを作成できます。

4. ディープラーニング

ディープラーニングは、データの階層的またはマルチスケールの特徴を学習できる複数のレイヤーで構成されています。対照的に、「浅い学習」は、通常の機械学習モデリング アルゴリズムを単純に適用するだけです。通常、浅い学習は、入力が適切な形式でモデルに提示されるようにするための特徴エンジニアリングと切り離せないものですが、深層学習はトレーニング中にこれらの特徴を自然に学習します。

機械学習戦略は、機械学習アルゴリズムを使用して日常のビジネス問題を解決するときに考慮すべきもう 1 つの側面です。

<<:  人工知能時代の未来の教育

>>:  中国は2022年に耐量子暗号アルゴリズムを開発し、2025年に実装予定

ブログ    
ブログ    
ブログ    

推薦する

今後10年間で、AIは「スモールデータ」時代の到来を告げるでしょうか?

AI 研究に携わる人なら誰でも、データが AI の開発において重要な役割を果たすことをよく知ってい...

sklearnのトレーニング速度が100倍以上向上、米「Fanli.com」がsk-distフレームワークをオープンソース化

この記事では、Ibotta (「Rebate Network」の米国版) の機械学習およびデータ サ...

人工知能は人間の文化を継承するが、人間の偏見も受け継いでいる

テクノロジーは既存の人間文化の延長です。テクノロジーは人類の知恵を広げた一方で、人々の偏見や差別も受...

人工知能が台頭しています。インテリジェントセキュリティの開発はどのように進んでいますか?

セキュリティ業界は、人工知能の市場を長く有する業界として、人工知能の発展に対する理解がより明確で、そ...

Scikit-Learn を使用して、MNIST データセットを分類するための K 近傍法アルゴリズムを構築する

K 最近傍アルゴリズム、K-NN とも呼ばれます。今日のディープラーニングの時代では、この古典的な機...

...

...

AIと機械学習、5G、IoTは2021年に重要な技術となる

IEEEは、米国、英国、中国、インド、ブラジルの最高情報責任者(CIO)と最高技術責任者(CTO)を...

UiPath: 自動化とは、退化を拒否し、価値の高い仕事の創出に専念することです

【51CTO.comオリジナル記事】近年、RPAの開発はかつてないほど注目を集めています。 Mark...

LeCun が喧嘩を始めた、LLM は全く理屈が通らない!大規模モデルの出現は、最終的には文脈学習と切り離せないものである。

大規模言語モデルは推論できますか?出現したさまざまな能力の源は何でしょうか?少し前に、LeCun 氏...

コードを入力すること、詩を書くこと、論文を書くこと、すべてが可能です!史上最大のAIモデルGPT-3がGithubを席巻

[[334935]]最近、GPT-3が人気になってきました!インターネット上で GPT-3 のさまざ...

AIGCの投資刺激策のおかげで、マイクロソフトとグーグルのクラウドコンピューティング事業は大幅に成長した

MicrosoftとGoogleはAI市場の支配を競っており、両社ともAIハードウェアに多額の投資を...

米国NHTSAの新規制:レベル2以上の自動運転に関わる事故は報告が必要

米国道路交通安全局(NHTSA)は、SAEレベル2の先進運転支援システム(ADAS)またはSAEレベ...

...