この記事は公開アカウント「Reading Core Technique」(ID: AI_Discovery)から転載したものです。 人工知能はすでに私たちの日常生活に浸透しています。 YouTube のホームページのおすすめから医薬品の製造まで、インターネットはあらゆるところに存在し、私たちの生活に与える影響は想像以上に大きいものです。しかし、AI は必ずしも公平なのでしょうか? いいえ、絶対にそうではありません。
公平な AI とは何かを定義するのは困難です。私が思いつく最良の定義は次のとおりです。社会的差別の対象となる特定のタスクについては、特定の AI モデルが、敏感なパラメーター (性別、人種、性的指向、宗教的信念、障害など) に依存しない結果を出力できる場合、その AI モデルは公平です。 この記事では、AI バイアス、その実際の例、そしてその対処方法について説明します。 質問 AI バイアスは、モデルのトレーニングに使用されるデータに内在するバイアスによって引き起こされ、社会的差別につながり、ひいては機会均等の欠如につながります。 私の仕事が、場所をパラメータとして個人の信用スコアを計算するモデルを作成することだとします。特定の人種グループは特定の場所に集中しているため、作成されたモデルはそれらの人種グループに対して偏りがあり、クレジットカードや銀行ローンの申し込みに影響を及ぼします。偏った AI モデルは、現在の社会的差別を悪化させます。 AIバイアスの実例
これらの例はほんの一滴に過ぎません。開発者が知っているかどうかに関わらず、多くの不公平な AI 慣行が存在します。 この問題を解決するにはどうすればいいでしょうか? 公平な AI への第一歩は、問題を認めることです。 AIは不完全であり、データは不完全であり、アルゴリズムは不完全であり、テクノロジーは不完全です。問題に目をつぶれば、解決策を見つけることは不可能だろう。 次に、このソリューションに AI が必要かどうかを自問してください。被告が再犯する可能性を見つけるなどのタスクなど、データよりも感情に依存する問題の中には、データに依存しないものもあります。 3番目に、責任ある AI プラクティスに従います。 Google の責任ある AI 実践ガイドラインに基づいて、いくつかの重要なポイントを追加しました。責任あるAIの実践:
公正なAIを開発するためのツール
最近、企業や政府は人工知能における偏見を真剣に受け止め始めています。多くの企業が AI の公平性を評価するツールを開発し、AI の偏見に対処するために最善を尽くしています。 AI には大きな可能性がありますが、私たちはこれまで以上に AI システムの潜在的な差別的危険性を念頭に置き、公正な AI モデルの開発に協力しなければなりません。 |
偽の肖像ビデオ生成技術は、政治宣伝、有名人のなりすまし、証拠の捏造、その他のアイデンティティ関連の操...
まずは大学院入試から始めましょう。大学院入試の重要性は大学入試の重要性に匹敵します。数字で言うと、2...
AIが生成したPS動画は本物と見分けがつかないほどに進化している。昨年、ミシェル・オバマに似せるた...
ChatGPT の素晴らしい初年度が終わりに近づくにつれ、生成型人工知能 (genAI) と大規模言...
6月17日、世界最大のコンピュータービジョンカンファレンスであるCVPRの自動運転セミナーにおいて、...
熱帯雨林の杖が、ダンブルドアのようなあらゆる時代の並外れた魔法使いの伝説を生み出したのと同じように、...
サプライチェーンに影響を及ぼす人工知能 (AI) について知っておくべき 8 つの方法をご紹介します...
技術革新の時代において、人工知能 (AI) は変革の力として際立っています。パーソナライズされた推奨...
また冬が来て、終わりに近づいています。気温も少し上がり、広大な空と大地にはまだ溶けきれない白が残って...
今日最も進歩的で、最先端で、刺激的なもの…データ サイエンスと機械学習は、今日非常に魅力的で、非常に...
社会における分業がますます洗練されていくにつれ、まるで種の進化のように、新しい職業が次々と生まれ、中...
ChatGPTの登場以来、OpenAIが使用するトレーニング方法である人間によるフィードバックによる...