機械学習を活用して産業オペレーションにおける運用リスクを管理する

機械学習を活用して産業オペレーションにおける運用リスクを管理する

センサーデータは、産業オペレーションにおける運用の安全性と効率性を確保する上で重要な役割を果たします。センサーは、温度、圧力、流量、振動などのパラメータを測定するために産業環境で広く使用されています。これらのセンサーから得られるデータは、施設資産の物理的状態に関する重要な情報をオペレーターに提供します。

[[359229]]

モノのインターネットと自動化の成長により、センサーの採用が広がっています。 Global Market Insights の最近のレポートでは、産業用センサー市場は 2026 年までに 7% 成長し、出荷数は 30 億個に達すると予測されています。

「石油・ガス、製造、エネルギー・電力、ヘルスケアなど、さまざまな産業分野でセンサーの需要が高まっており、それが産業用センサー業界の需要を牽引するでしょう。例えば、スマートグリッドの効率向上を目的とした電力分野でのセンサーの採用増加は、市場の成長にプラスの影響を与えるでしょう。」

しかし、この幅広い採用には独自の課題が伴います。センサーの数が増えると、受信データをリアルタイムで監視するタスクはより複雑になり、人為的エラーが発生しやすくなります。さらに、センサーの障害による微妙なデータ異常(キャリブレーションエラー、測定ドリフト、詰まり/汚れなど)は、インシデントが発生するまで人間の目には気づかれないことがよくあります。これらのイベントが直ちにリスクをもたらさない場合でも、入力データの品質が大幅に低下し、資産の状態の長期的な状況が変化する可能性があります。データ品質が低いと、データ分析や予測メンテナンスの取り組みに大混乱が生じる可能性があります。

企業は、機械学習を使用してこの問題をスケーラブルに解決する方法を理解し始めています。 ML は、医療診断や詐欺防止などの他の状況でも、人間よりも高い精度で大規模なデータセット内の異常なパターンを検出するために使用されています。したがって、同様のアプローチを使用して、手動分析の負担を軽減し、産業用アプリケーションにおける人為的エラーの範囲を減らすこともできます。

過去数年間、このアプローチの応用は、石油・ガス、発電、化学部門でのパイロットおよび本格的な導入を通じて、特にヨーロッパと中東で飛躍的に増加しました。

機械学習は、産業用センサーからのリアルタイム監視とデータ品質の長期的な低下の両方に対処する上で、ますます重要な役割を果たすようになります。このアプローチは将来さらに広く採用されるようになると予想されており、私たちはその成長に大きく貢献できることを期待しています。

<<:  Google:MLの発展を牽引する転移学習とは何でしょうか?丨NeurIPS 2020

>>:  人工知能(AI)が商業ビルのアプリケーションで成功を収める

推薦する

...

AI4Science はまだ誤った提案なのでしょうか? 2年後、ワークショップ主催者はAI4Scienceを再検討する

2021年、情熱的な若者のグループが、AI4Science(AI for Science)を機械学習...

マスク氏が選んだ天才少年:14歳でスペースXの最年少エンジニアとなり、年俸100万、2歳で学び始め、11歳で大学へ進学

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

すべてのトップオブジェクト検出アルゴリズムを統合: FAIRオープンソースDetectron

昨日、Facebook AI Research (FAIR) は、業界で最も先進的な物体検出プラット...

[文字列処理アルゴリズム] 最長共通部分文字列を取得するためのアルゴリズム設計とCコード実装

1. 要件の説明2 つの文字列を入力し、2 つの文字列の最長共通部分文字列を取得するプログラムを作成...

素晴らしい操作です!たった5行のコードで画像認識AIが作れる

この記事では、人工知能の分野、特にコンピューター ビジョンの分野について簡単に紹介し、そこに含まれる...

...

元GitHub CEO:AIプログラミングアシスタントCopilotは価格よりも安く、損失はない

10月13日、元マイクロソフト幹部で元GitHub CEOのナット・フリードマン氏は、10月12日に...

類似画像検索エンジンを効率的に開発するにはどうすればよいでしょうか?

翻訳者 | 朱 仙中校正 | 梁哲、孫淑娟プロジェクト紹介類似画像検索とは、関連するあらゆる画像を検...

北京大学の法律モデルChatLawがサーバー爆発:張三の裁判方法を教えます

大型モデルが再び「爆発」した。昨夜、法律モデルChatLawがZhihuのホット検索リストのトップに...

...

...

馬化騰と李延紅の対談:基礎技術は巨大産業の変革の基盤

11月8日、烏鎮で開催された世界インターネット大会で、馬化騰氏と李ロビン氏が首脳対談を行った。2人の...

人類の未来における人工知能の重要性

人工知能(AI)は私たちが住む世界を急速に変えています。医療から金融まで、人工知能は産業を変革し、私...

...