JVMの基本的なガベージコレクションアルゴリズムについて

JVMの基本的なガベージコレクションアルゴリズムについて

この記事は JavaEye ブログからの引用であり、元のタイトルは「JVM チューニングの概要 (パート 3) - 基本的なガベージ コレクション アルゴリズム」です。

前回は、データ型、ヒープとスタック、Java オブジェクトのサイズと参照型など、JVM の基本的な概念をいくつか紹介しました。以下では、JVM のガベージ コレクション アルゴリズムについて説明します。ガベージ コレクション アルゴリズムは、さまざまな観点から分類できます。

基本的なリサイクル戦略によれば

参照カウント:

古いリサイクルアルゴリズム。原則として、このオブジェクトには参照があり、それによってカウントが増加し、参照を削除するとカウントが減少します。ガベージ コレクション中は、カウントが 0 のオブジェクトのみが収集されます。このアルゴリズムの最も致命的な問題は、循環参照の問題を処理できないことです。

マークスイープ:

このアルゴリズムは 2 段階で実行されます。最初のステージでは、参照ルート ノードから始まるすべての参照オブジェクトをマークし、2 番目のステージではヒープ全体を走査してマークされていないオブジェクトをクリアします。このアルゴリズムではアプリケーション全体を一時停止する必要があり、メモリの断片化が発生します。

コピー:

このアルゴリズムは、メモリ空間を 2 つの等しい領域に分割し、一度に 1 つの領域のみを使用します。ガベージ コレクション中、現在使用されている領域が走査され、使用中のオブジェクトが別の領域にコピーされます。このアルゴリズムは、使用中のオブジェクトのみを毎回処理するため、コピーコストは比較的小さくなります。同時に、コピー後にメモリを適切にソートできるため、「断片化」の問題は発生しません。もちろん、このアルゴリズムの欠点も明らかです。つまり、メモリスペースが 2 倍必要になるということです。

マークコンパクト:

このアルゴリズムは、「マーク アンド スイープ」アルゴリズムと「コピー」アルゴリズムの両方の利点を組み合わせたものです。これも 2 つのステージに分かれています。最初のステージでは、ルート ノードから始まる参照されているすべてのオブジェクトをマークします。2 番目のステージでは、ヒープ全体を走査し、マークされていないオブジェクトをクリアし、生き残ったオブジェクトをヒープの 1 つの部分に「圧縮」して、順序どおりに配置します。このアルゴリズムは、「マークアンドスイープ」アルゴリズムの断片化の問題を回避し、「コピー」アルゴリズムのスペースの問題も回避します。

治療方法によって分けられる

増分収集: アプリケーションの実行中にガベージ コレクションを実行するリアルタイム ガベージ コレクション アルゴリズム。何らかの理由で、JDK5.0 のコレクターはこのアルゴリズムを使用しません。

世代別収集: オブジェクトのライフ サイクルの分析に基づくガベージ コレクション アルゴリズム。オブジェクトは若い世代、古い世代、永久世代に分けられ、異なるライフサイクルでオブジェクトをリサイクルするために異なるアルゴリズム (上記の方法のいずれか) が使用されます。現在のガベージ コレクター (J2SE1.2 以降) はすべてこのアルゴリズムを使用します。

システムスレッド別

#t#シリアルコレクション: シリアルコレクションでは、単一のスレッドを使用してすべてのガベージコレクション作業を処理します。マルチスレッドのやり取りが不要なため、実装が簡単で効率が高くなります。ただし、複数のプロセッサを活用できないという制限も明らかであるため、このコレクションはシングルプロセッサ マシンに適しています。もちろん、このコレクターは、データ量が少ない (約 100 MB) マルチプロセッサ マシンでも使用できます。

並列コレクション: 並列コレクションでは、複数のスレッドを使用してガベージ コレクション作業を処理するため、処理が高速かつ効率的になります。理論的には、CPU の数が多いほど、並列コレクターが発揮できる利点は多くなります。

同時実行コレクション: シリアル コレクションや並列コレクションと比較すると、前 2 つはガベージ コレクションを実行するときにオペレーティング環境全体を一時停止する必要があり、ガベージ コレクション プログラムのみが実行されます。そのため、ガベージ コレクション中にシステムは明らかな一時停止状態になり、ヒープが大きくなるにつれて一時停止時間が長くなります。

<<:  携帯電話の通話は安全ではない、GSM暗号化アルゴリズムが破られた

>>:  Wu Fengguang: Linux を使って事前読み取りアルゴリズムを学ぶ

ブログ    
ブログ    

推薦する

AIOps の実装を公開! 3 人の WOT エキスパートが AIOps を実現する方法をご覧ください

[51CTO.comよりオリジナル記事] 6月21日、WOT2019グローバル人工知能技術サミットが...

ハッカーがテスラの自動運転システムの「隠しモード」を解除

最近開催されたカオスコンピューティングカンファレンスで、ベルリン工科大学のサイバーセキュリティ研究者...

C# アルゴリズム アプリケーションでのガウス消去法の実装

C# アルゴリズム アプリケーションでガウス消去法を実装するにはどうすればよいでしょうか?工学の学習...

強化学習でデータ分析を行うにはどうすればいいでしょうか?シンガポール国立大学等によるTKDE 2022レビュー論文

データの処理と分析は基本的かつ広範囲にわたります。アルゴリズムはデータの処理と分析において重要な役割...

人工知能はデータセンター業界にどのような影響を与えるでしょうか?

人工知能(AI)、特にChatGPTなどの生成型AI製品の開発は、過去1年間、主要メディアの見出しを...

ゼロからヒーローへ、OpenAIが深層強化学習リソースをリリース

OpenAI は、誰でも深層強化学習に習熟できるように設計された教育リソース「Spinning Up...

DAMO アカデミーの 2020 年の予測: AI は知覚知能から認知知能へと進化する

1月2日、アリババDAMOアカデミーは2020年のトップ10テクノロジートレンドを発表しました。これ...

世界を変えるために活動する5つのAIスタートアップ

ディープラーニングとニューラル ネットワークの進歩により、自然言語処理とコンピューター ビジョンに大...

マイクロソフト:新しいアルゴリズムにより Windows 11 の累積アップデートのサイズが 40% 削減

本日、Windows 11 システムは Patch Tuesday でリリースされた最初の累積的な更...

Google が 11 の言語をカバーする TyDi QA コーパスをリリース

[[315942]]多言語の質問応答技術の研究を促進するために、Google は 11 種類の言語を...

...

【他者から学ぶ】360 多面的関心の想起マインド実践的最適化

1. 事業背景ショートビデオや情報ストリームなどのシナリオの増加に伴い、ユーザーはこれらのシナリオで...

大規模モデルのスコアリングのためのベンチマークは信頼できるでしょうか? Anthropicは大きなレビューを出した

現段階では、人工知能 (AI) が社会に与える影響に関する議論のほとんどは、信頼性、公平性、悪用され...