AIが医薬品開発において適切な医薬品成分の特定にどのように役立つか

AIが医薬品開発において適切な医薬品成分の特定にどのように役立つか

[[378110]]

デジタル技術の導入に関しては、製薬業界では導入が遅れる傾向にあります。これまで、多くの製薬メーカーは、医薬品の開発に人工知能と機械学習戦略を活用するというアイデアを先送りしてきました。人工知能は医薬品開発において革新の波を起こす可能性を秘めている。しかし、製薬業界は、医薬品の発見と開発に適用されるプロセス間のギャップを埋めるよう努めるべきです。

ヘルスケア業界では AI テクノロジーがいち早く導入されています。人工知能とその関連技術は医療業界で大規模に活用されています。しかし、製薬業界は、医薬品開発プロセスを加速するためにデジタル技術を活用する取り組みの初期段階にあります。創薬の主な目的は、人体に有益な効果をもたらす薬を特定することです。適切な薬を見つけるのは、病気に関連する標的分子に特異的に結合できる分子の大規模なライブラリをスクリーニングする必要がある長いプロセスです。適切な薬剤を見つける作業は、それを有望な化合物に開発するために数え切れないほどのテストを経ることになります。タコニック・バイオサイエンスによれば、製薬メーカーは多くの時間と費用を費やしており、医薬品を市場に出すまでの平均コストは28億ドル以上、開発期間は12年にも及ぶという。幸いなことに、AI は製薬業界が適切な医薬品を見つけて開発するのに役立ちます。人工知能は擬人化された知識を活用し、それが生み出す解決策から学習して、医療分野における特定の問題や複雑な問題を解決します。

医薬品開発のための人工知能プラットフォーム

医薬品の開発を手作業で行う場合、長いプロセスが必要になります。これまで、研究者は病気を引き起こす標的タンパク質を特定し、長期にわたる研究を行う必要がありました。次に、どの成分または分子がタンパク質に影響を与えるかを調べようとしました。このプロセスでは、研究者は安全で効率的な分子が発見され、さらに使用されることを保証します。創薬における AI の役割は、タンパク質をより適切に標的とする分子を見つけることから始まります。研究者たちは大量の分子をテストすることができなかった。このプロセスは長く、費用もかかります。幸いなことに、AI プラットフォームでは、この長いテスト プロセスを簡単な分析に置き換えることができます。研究者たちはAIプラットフォームにパラメータを入力し、分子を分析させます。 AIプラットフォームは、医薬品開発に使用する適切な分子を特定しました。

医薬品開発におけるニューラルネットワークの応用

ディープニューラルネットワークは科学技術分野で使用されてきましたが、2012 年までは広く注目されていませんでした。トロント大学の研究者は、ImageNet Large Scale Visual Recognition Challenge (ILSVR) の研究でディープ ニューラル ネットワークを使用しました。多くの製薬会社は、古典的な統計手法を研究するためにさまざまな種類のディープニューラルネットワークを使用しています。この技術は、効果的な薬剤に適した分子を見つけるのに役立ちます。ディープ ニューラル ネットワークは、化学者に、特定の望ましくない活動を排除するために何をすべきかを即座に指示します。このタイプのディープ ニューラル ネットワーク モデルは、化学者が化合物のアイデアを合成するかどうかを決定する前に判断するためにも使用されます。

人工知能のビッグデータが医薬品開発に役立つ

ヘルスケアデータは非常に重要です。現在、何百万もの研究、フィードバック、レポート、患者記録、その他医療業界に関連する多くのものがビッグデータの形で AI システムに取り込まれています。ヘルスケア分野では解決策の提示がかなり遅れているものの、医療機関は最先端を行くよう最善を尽くしています。 AI システムの特徴は、適切なメカニズムを使用してデータを探索し、そこから意味のある解釈を行うことです。ディープラーニング プログラムは取得したデータに基づいて実行され、タンパク質の存在についてさらに学習します。そして、これらのタンパク質が健康な人と患者の間でどのように異なるのかを調べます。同時に、機械学習技術は、タンパク質と疾患の関連性を発見し、確立するために役立ちます。

段階的な医薬品開発における人工知能の応用

コロナウイルスの発生前は、ワクチン開発プロセスがこれほど早くなるとは誰も思っていなかった。ワクチンの開発とテストには何年もの研究と観察が必要です。しかし、疫病によりその日常は崩れ去った。世界中の政府は、できるだけ早く効果的なワクチンを開発しようと競争している。この期間中、製薬業界への投資は急増しました。製薬メーカーは、臨床試験を加速し、緊急承認を得るために、ワクチン製造プロセスを支援するために人工知能を活用している。

医薬品開発における人工知能 (フェーズ 1): 適切な医薬品を開発するには、既存の文献を読んで分析し、潜在的な医薬品がターゲットとどのように相互作用するかをテストする必要があります。 AI は人間よりも速くタスクを実行し、結果を素早く提供します。

前臨床開発段階の AI(フェーズ II):臨床開発段階では、薬剤の効能を調べるために動物で試験が行われます。この段階で AI を公開することで、試験がよりスムーズに実行され、研究者は動物モデルにおける薬物相互作用をより迅速かつ正確に予測できるようになります。

臨床試験中の AI (フェーズ III): 研究者は臨床試験中に人間を対象に薬剤のテストを開始します。 AI は、臨床試験中の参加者の監視を容易にし、より大規模なデータセットをより迅速に生成し、試験体験をパーソナライズすることで参加者の維持に役立ちます。

道徳的欠陥

AIは医薬品開発に大きく貢献していますが、倫理的な問題もいくつか生じています。医療業界では大量の患者データが保存されています。この重要なデータがハッカーや悪意のある人物の手に渡った場合、悪意のある目的で使用される可能性があります。医療機関は患者のプライバシーを保護する必要がありますが、他の多くの業界とは異なり、製薬メーカーにプライバシーの保護を義務付ける規制やポリシーはありませんが、患者データを保護し、適切に使用する責任は製薬会社にあります。

<<:  通信産業の発展を後押しし、2つの主要ドローンの価値が強調される

>>:  ロボット「ソフィア」の現状は普通の人間と変わらず、コミュニケーション障壁もない

ブログ    
ブログ    

推薦する

中国科学院は、プログラマーがバグを見つけるのを助けるために大きなモデルを使用し、102の論文を分析し、これらの解決策をまとめた。

中国科学院は「バグ発見」に着手し、一気に N 個の解決策をまとめました。魔法の武器は大きなモデルです...

世界最大の公開顔データセット | 清華大学と信義科技が共同リリース

[[387945]]この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI...

超人気のミニGPT-4は視覚機能が急増し、GitHubでは2万個のスターを獲得し、中国のチームによって制作されています

ターゲット検出用のGPT-4V?ネットユーザーの実地テスト:まだ準備ができていません。検出されたカテ...

人工知能の到来。会計士は不安になるべきでしょうか?

「人工知能の発達により、労働力は解放されました。工場では、大量の労働者が排除され、高効率で高速なロ...

「疑似人工知能」が飛び交う。スマートホームで実現できるのか?

AlphaGo から Master まで、人工知能 (AI) は再びテクノロジー界の最前線に押し上...

...

...

人工知能が世界を席巻し、人類はサイボーグへと向かう必要がある

テスラのCEOイーロン・マスク氏はドバイでのイベントで人工知能の将来について語った。同氏は、人間より...

...

大規模言語モデルによる金融市場の予測

大規模言語モデル (LLM) は、数百万または数十億のパラメータを持つ人工ニューラル ネットワークで...

無料の機械学習ベンチマークツール:主要なデータセットを統合し、GitHubに接続して使用する

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

パフォーマンス最適化技術: アルゴリズム

アルゴリズムとその実装にはさまざまな種類がありますが、この記事ではシングルコア、シングルスレッドのア...

人工知能は飛躍の準備ができており、セキュリティは機会と課題に直面している

近年、人工知能はその地位の向上に伴い、国からますます注目を集めています。 2015年7月には「国務院...

2017 年に最も価値のある機械学習のスキルや知識は何ですか?

2017 年に最も価値のある機械学習スキルはどれでしょうか? Quora の 2 つの回答では、最...

人工知能が「人工知能」にならないようにするための鍵は、まだ人間の脳にあるかもしれない

ペンシルベニア州立大学の研究チームによると、脳内のアストロサイトと呼ばれる細胞の機能を解明し、それを...