Google Robotics Research Scientist: ML 論文の要点を素早く理解するための 5 つの質問を覚えておきましょう

Google Robotics Research Scientist: ML 論文の要点を素早く理解するための 5 つの質問を覚えておきましょう

[[382214]]

編纂者:Qi Lubei

編集者:陳彩仙

機械学習の分野は非常にホットであり、新しいモデルやテクノロジーが絶えず急速に更新されているため、私たちは日々の仕事や勉強の中でいくつかの論文を読み、特定の分野の最新の動向を追跡する必要があります。

しかし、論文を読むときに、忘れやすいということと、要点をつかみにくいということの 2 つの不快感を感じることがよくあります。 忘れるというのは、通常、後半部分を読んだ後に前に読んだ内容を忘れてしまうこと、または数日後に読んだ論文を振り返ってみて、それが何についてのものだったのか全く思い出せなくなることを意味します。 要点を把握できないことは、論文を全体的な視点から研究することに重点を置かず、逐語的に読むことを好むことに反映されています。

では、機械学習分野の論文はどのように読めばいいのでしょうか?

Google Robotics の研究科学者 Eric Jang 氏は、自身のブログに「機械学習の論文を素早く理解する方法」という記事を投稿し、学生から「arXiv には毎日たくさんの論文が掲載されていますが、どうしたら選択的に読むことができますか?」といった同様の質問を受けることが多いと述べています。

彼は、機械学習分野のほとんどの論文を読むことの利点は、論文の論理を理解するために 5 つの簡単な質問をするだけでよく、難しい用語や数学的導出の不備など、多くのトラブルを回避できることだと示唆しました。

5つの質問は次のとおりです。

1. 関数近似器への入力は何ですか?

たとえば、1 つのオブジェクトのみが中央に配置された 224x224x3 RGB ビュー。

2. 関数近似器の出力は何ですか?

たとえば、これは入力長が 1000 ベクトルの画像に対応します。

機械学習システムの入力と出力をこのように「楕円形」の方法で考えると、アルゴリズムの用語を飛ばして、他の分野で同じ目標が他の方法で達成されているかどうかを検討することができます。 「メタ学習」の分野の論文を読むときに、このアプローチが非常に役立つことがわかりました。

機械学習の問題を入力と予想される出力のセットとして見ると、入力が出力を予測するのに十分かどうかを推論できます。この演習を行わないと、入力によって出力が決まらないランダムな機械学習の問題が発生する可能性があります。そのため、「エラー」を誘発する機械学習システムを作成することが可能です。

3. 出力の予測はどのようなコストで監視されますか? この特定の目標は世界についてどのような仮定を立てますか?

機械学習モデルは、バイアスとデータを組み合わせて形成されます。偏見は強い場合もあれば弱い場合もあります。モデルの一般化を向上させるには、バイアスをさらに追加するか、バイアスのないデータをさらに追加する必要があります。 「ただのランチはない」理論が指摘するように、優れたモデルは簡単には作れません。

一例を挙げると、多くの最適制御アルゴリズムは、安定した連続的なデータ生成プロセス、つまりマルコフ決定プロセス (MDP) を想定しています。 MDPでは、環境の遷移を通じて「状態」と「アクション」が「次の状態、フィードバック、終了するかどうか」に動的にマッピングされます。この構造は非常に一般的ですが、学習した Q 値がベルマン方程式に従うように損失を定式化することができます。

4. トレーニング後、モデルはこれまで聞いたことのない入力/出力から何を一般化できますか?

機械学習システムは、データまたはモデルのアーキテクチャから取得された情報により、適切に一般化されます。近年、一般化のレベルが高まってきています。そのため、論文を読むときは、驚くべき一般化機能とその出所(データ、バイアス、またはその両方)を探すようにしています。

因果推論、記号的アプローチ、オブジェクト中心の表現など、ノイズが多い領域では、より優れた帰納的バイアスが存在します。これらは堅牢で信頼性の高い機械学習システムを構築するための重要なツールであり、構造化データとモデルのバイアスとの境界が曖昧になる場合があることは承知しています。そうは言っても、機械学習を前進させるには学習の量を減らし、ハードコードされた動作の量を増やすことだ、と多くの研究者が信じているのはなぜなのか、私には理解できません。

私たちが「機械学習」の研究をする理由は、まさにハードコードする方法が分からないものがあるからです。機械学習の研究者として、私たちは学習方法の改善に力を注ぎ、ハードコーディングやシンボリックな方法は機械学習の研究者に任せるべきです。

5. 結論は反証可能か?

反証不可能であると主張する論文は科学の領域には属さない。

オリジナルリンク: https://blog.evjang.com/2021/01/understanding-ml.html

[この記事は51CTOコラムBig Data Digest、WeChatパブリックアカウント「Big Data Digest(id: BigDataDigest)」のオリジナル翻訳です]

この著者の他の記事を読むにはここをクリックしてください

<<:  2021 年のトップ 12 AI ツールとフレームワーク

>>:  ロボティックプロセスオートメーションの開発展望

ブログ    
ブログ    
ブログ    

推薦する

ビッグデータが地球を救う10の方法

近年、多くの物事の成功はテクノロジーの進歩によるものと言えます。その一つは、気候変動のリスクから地球...

人工知能はデータの管理と処理を改善する素晴らしい方法です

初期の AI マシンは不完全であり、明確に定義された指示に従ってのみ動作できました。しかし、コンピュ...

...

...

ディープラーニングと機械学習の違いを理解する

機械学習とディープラーニングの違いは何だろうとよく疑問に思う方は、この記事を読んで、その違いを一般の...

日本俳優連合がAI法案を提案、「声の肖像権」創設求める

俳優や声優(声優)の保護に取り組む日本俳優協会は6月14日、「生成型人工知能技術の活用に関する提言」...

Google はなぜいつも AI に芸術を強制するのでしょうか?

Google の人工知能といえば、チェスマシンの AlphaGo や Waymo の自動運転車を思...

Metaが新しいモバイルAIジェネレーターを公開、5分でAIアプリを作成、AndroidとiOSの両方をサポート

最近、毎年恒例の PyTorch 開発者会議が開催されました。このカンファレンスでは、Meta(旧F...

人工知能技術の出発点と終着点

1. 人工知能技術の定義人工知能技術は、複雑な生産労働において機械が人間に取って代わることを可能にす...

...

AIが医療をどう変えるか リアルタイムのデータ分析は医療にとって重要

科学者たちは、人工知能が多くの分野で人間を日常的な作業から解放できると信じています。ヘルスケアはこう...

...

構造化データのためのテキスト生成技術の研究

1. テキスト生成入門まず、現段階で人気のテキスト生成について紹介します。 1.人工知能の発展段階人...