5つの新たなAI IoTアプリケーション

5つの新たなAI IoTアプリケーション

人工知能とモノのインターネットを組み合わせたこの新しい技術の波は、新たな機会をもたらし、業界全体の運営方法を変える可能性があります。ここでは、5 つの新しい AI IoT アプリケーションをまとめて紹介します。

[[385409]]

5つの新たなAI IoTアプリケーション

01. 自動運転

自動運転は常に人々の想像力をかき立ててきましたが、これは AI と IoT がどのように連携できるかを示す素晴らしい例です。自動運転車(AV)には、周囲の状況に関する膨大なデータを継続的に収集するセンサーが搭載されています。このデータは AI モデルを使用してインテリジェントな洞察に処理され、車両のナビゲーション システムが環境を調整し、複雑な経路計画をリアルタイムで実行できるようになります。

02. 光学検査

コンピュータービジョンベースの品質検査は、人工知能の最大の応用分野の 1 つです。自動化された光学検査では、産業機械をスキャンして品質上の欠陥を検出し、欠陥が特定されると、半教師あり ML アルゴリズム モデルが画像を障害カテゴリに分類したり、計画されたメンテナンスを予測したりします。

AI ベースの IoT ソリューションは、企業に予測メンテナンス アプリケーションを提供し、機器の故障を事前に予測します。

03. サイバーセキュリティ

ガートナーによれば、2020年までに200億個のIoTデバイスが接続されることになるという。 Statista は、2030 年までに、ウェアラブルから電車の運行まであらゆるものに使用される IoT デバイスが世界中に約 500 億個設置されると予測しています。この偏在性により、彼らは攻撃の魅力的な標的となるでしょう。

対策として、AI 対応のサイバーセキュリティ システムは、サイバー侵害を検出し、貴重なデータを保護し、サイバー攻撃をブロックすることができます。AI システムは、通常のアクティビティ パターンを学習し、異常なアクティビティが発生したタイミングを判断できるため、誤報の頻度が減り、サイバー攻撃が発生した可能性が示されます。

04. アクティブヘルスケア

COVID-19の発生により、スマートな健康モニタリングとパンデミック管理のニーズを満たすために、IoTとAIの融合(AIIoT)が広く注目を集めています。

ウェアラブル IoT センサーは患者のバイタルサインを追跡し、それを医師や介護者にリアルタイムで更新して、重大な健康上の問題を警告します。 AI と機械学習アルゴリズムを組み合わせることで、大量のデータを分析して、人の全体的な健康状態に関する洞察を得ることができます。これにより、記録を維持するための手動介入が不要になり、医療スタッフはパーソナルケアなどのより重要なタスクに集中できるようになります。 COVID-19の発生により、スマートな健康モニタリングとパンデミック管理のニーズを満たすために、IoTとAIの統合が広く注目されています。

05. エネルギー管理

モノのインターネットと人工知能は、エネルギー消費の削減に役立つ可能性があります。どの業界でも、HVAC システムは建物の総エネルギー消費量の大部分を占め、総エネルギー消費量のかなりの部分を占めています。一般的なシステムは建物のエネルギー消費量の 40% を占めます。過去の効率性を学習する機械学習プログラムは、エネルギー消費を 20% 削減することが示されています。

IoT センサーを搭載したスマート街灯は、歩行者や通行人に関するデータを収集できるため、システムはエネルギー消費を最大 80% 節約できます。 AI 機能と機械学習およびディープラーニング アルゴリズムを組み合わせることで、IoT センサーから生成されたデータを解析し、リアルタイムのエネルギー消費を追跡します。

人工知能とモノのインターネットの統合により、グローバルビジネスに大きな可能性がもたらされました。

<<:  機械学習のプライバシー研究における新たな進歩: データ強化のリスクは過小評価されており、新しいアルゴリズムは次元依存性を「克服」します

>>:  10億枚の画像で訓練されたFacebookの新しいAIモデルは、コンピュータービジョンに革命を起こす可能性がある

ブログ    
ブログ    

推薦する

PyTorch を学ぶには?簡単すぎる

多くの友人から、PyTorch の学習方法を尋ねられました。長期間の練習を経て、初心者が知っておく必...

ブリッジで人間の世界チャンピオン8人が全員AIに負ける

最近、人工知能(AI)が再び人間に勝利しました。今回、人工知能はチェッカーやチェス、囲碁をプレイせず...

自動機械学習でニューラルネットワークを進化させる方法

機械学習に携わるほとんどの人にとって、ニューラル ネットワークの設計は芸術作品の作成に似ています。ニ...

...

AIがIoTの状況をどう変えるのか

人工知能 (AI) はモノのインターネット (IoT) の世界に革命をもたらし、IoT の人工知能 ...

偽の顔を正確に生成します! Amazonの新しいGANモデルは死角のないオールラウンドな美しさを提供します

最近、Amazon One の研究者は、生成された画像を明示的に制御できる GAN をトレーニングす...

...

ニューラルネットワークにおけるBPアルゴリズムの原理とPython実装のソースコード解析

私は最近、BP アルゴリズムを体系的に研究し、この研究ノートを書きました。私の能力が限られているため...

...

見逃せない AIOps 実装の重要なポイントを解説するガイド

[[280530]] [51CTO.com クイック翻訳] システムの効率性と複雑さが増すにつれて、...

...

アンドリュー・ン氏のチームが2019年のAIトレンドを振り返る:自動運転は寒い冬を迎え、ディープフェイクはモンスターとなった

あと数日で2019年も終わりです。今年は AI が夢から現実へと移り変わる年です。NLP から自動運...

...

Toutiaoのアルゴリズムロジックを使用してMacOSを再設計しました

仕事以外では、私はほとんどの時間を2つの状態で過ごしています。1つは見出しを閲覧している状態で、もう...

...