自動運転の 6 つのレベル: 真の無人運転までどれくらいの距離があるのでしょうか?

自動運転の 6 つのレベル: 真の無人運転までどれくらいの距離があるのでしょうか?

社会の発展に伴い、わが国の工場は徐々に手作業中心から設備中心へと変化し、人類の創造性が十分に反映されています。人々の労働は楽になっただけでなく、効率も向上しました。

[[386613]]

自動車業界でも同様です。人々が安全かつ簡単に移動できるようにするために、自動運転技術は今日の自動車革命における重要な課題となっています。名前が示すように、自動運転技術とは、人間の介入なしに車が自動運転することを意味します。もちろん、現在の技術レベルでは、緊急事態に対処するために誰かがまだ必要です。今後、自動運転に関する情報がますます増えていくでしょう。

現在、自動運転の国際レベルは、L0、L1、L2、L3、L4、L5の6つのレベルに分かれています。これら 6 つのレベルの具体的な区分について詳しく見てみましょう。

最初のレベルである L0 は、基本的に自動化がまったく行われず、車が完全に人間によって運転されることを意味します。現在、ほとんどの種類の車両では非自動化が広く使用されており、ほとんどの種類の車両は完全に人間によって制御されており、プロセス全体を通じてドライバーの精神、手、足が使用されています。

2 番目のレベルであるL1 は、車両の操作をドライバーに完全に依存している L0 レベルと比較して、自動運転の L1 レベルでは、前方の車両とのリアルタイムの距離をレーダーで検出して加速と減速を自動的に制御するなど、いくつかの単純な交通行動を自動的に識別し、前方の車両との安全な距離を維持するなど、ドライバーにいくつかの運転サポートを提供できます。現時点では、この技術は普及しており、中国の多くの商用車に使用されています。この技術の主体は依然として人間です。乗り物自体には若干の補足がありますが、人間の精神、手、足はまだ解放されていません。

3番目のレベルであるL2は、部分的に自動化された自動運転です。このレベルでは、自動システムが特定の運転タスクを完了できますが、ドライバーは高度な集中力を維持し、常に手足をスタンバイ状態にして、システムを適時に引き継いで特別な状況での緊急事態に対処できるようにする必要があります。 L2 レベルの自動運転は、依然として限られたシナリオで動作する必要があります。この技術により、人間はプロセス全体を通じて手足を使わずに済みますが、一部の特殊な状況に対処するには高い精神集中が必要です。現在市場に出回っている L2 レベルの自動運転技術は、最高レベルの技術です。

[[386615]]

第4レベルであるL3は制限付き自動運転ですが、この制限はL2よりも広い範囲に及びます。車両は特定の運転交通環境において、すべての運転操作を自主的に完了することができます。ここでは、すべての運転操作は人間の関与を必要とせず、システムは環境の変化を自動的に検出して、ドライバーの手動操作モードに戻るかどうかを判断できます。人工知能が正確な判断ができない場合は、やはり手動操作が必要になります。

レベル5 、L4は、高度自動化レベルとも呼ばれます。このレベルでは、自動運転機能がすべての運転操作を完全に引き継ぐことができます。ドライバーは運転操作に集中する必要がなく、携帯電話を見たり休憩したりするなど、運転に関係のない他のことを行うこともできます。しかし、L4レベルは高度な自動化の基準に達しているものの、反応速度や特殊な状況への対応力は依然として人間に劣り、シナリオによって制限されており、すべてのシナリオに完全に適応することはできません。  

レベル 6 、レベル 5 は、完全自動化とも呼ばれます。前のレベルと似ていますが、シナリオの制限はありません。このレベルの自動運転車は、あらゆるシナリオで車両を完全に運転できます。目的地を設定するだけで安全かつスムーズに到着できます!

要約:

現段階では、車両に適用されている自動運転の最高レベルはL2またはL2+であり、完全な自動化にはまだ遠い。L2からL3は自動運転の分水嶺である。L2レベルの自動運転技術では、依然として人が運転の主役を担う。車に問題があったり事故が起きたりした場合は、その人の責任となり、自動車メーカーはリスクを回避できる。レベル 3 になると、自動車ディーラーが事故が発生した場合にその費用を支払わなければならない可能性があります。

自動運転技術がL4レベルまで発展するのは難しいと思います。結局、機械が人間より信頼できるということはあり得ません。機械が人間と同じ思考力を持つ日が本当に来たら、あるいは人間の知能を超える日が来たら、人類は終わりです。どう思いますか?

<<:  機械学習アルゴリズムにおける分類知識の要約

>>:  機械学習においてデータ品質はどの程度重要ですか?

ブログ    
ブログ    
ブログ    
ブログ    

推薦する

OpenAIは米国で以前に申請していた「GPT-5」の商標を中国で登録申請した。

8月10日、国家知識産権局商標局の公式サイトによると、OPENAI OPCO, LLCは先月末に2...

Googleは、ニュースコンテンツを作成するために生成AIツールを使用するためにいくつかの出版社と提携していると報じられている。

2月28日、Adweekは、Googleがいくつかの出版社と、ニュースコンテンツを作成するための新...

人工知能が習得する必要がある知識ポイントは何ですか?どんな本を読めばいいでしょうか?非常に詳細なチュートリアル

[[243197]]人工知能とは何ですか?人工知能の定義は、「人工知能」と「知能」の 2 つの部分に...

スループットが約30倍に増加しました。田元東チームの最新論文は、大規模モデル展開の問題を解決している

大規模言語モデル (LLM) は今年非常に人気がありました。しかし、その驚異的な効果の背後には、巨大...

TOP50 人工知能のケーススタディ: AI は単なる誇大宣伝ではなく、努力によって実現される

AIは自慢するだけでなく、実践を通じて達成されます。コンセプトがどんなに優れていても、結果が重要です...

鍵となるのは人工知能コンピューティングセンターを構築し、それを活用することだ

デジタル経済の発展に伴い、全国の各省市がコンピューティングインフラの構築を競って推進し、人工知能コン...

Facebook のインタラクティブ ニューラル ネットワーク可視化システム ActiVis がニューラル ネットワークの「ブラック ボックス」を公開

これまで、多くのメディアがニューラルネットワークの「ブラックボックス」問題について熱く議論してきまし...

JD.comのインテリジェント顧客サービスブランドがリニューアル:「Yanxi」が2020 JDDカンファレンスでデビュー

「言葉の含意は心が繋がっている」という意味で、言葉がテレパシーのような共鳴を呼び起こし、人と人の間の...

レポート:中国の人工知能都市ランキングで北京が1位に

[[431347]]中国新聞社、北京10月26日(記者 夏斌)「2021年人工知能コンピューティング...

...

...

Google が 3,300 万ドルを投じて 5 年間の脳プロジェクトを開始!マウスの脳の2~3%をマッピング、エベレスト山とほぼ同じデータ量

人間の脳は、数十億個の細胞のネットワークで構成された、存在する最も複雑なコンピューターです。これまで...

...

GPT-4 の出力がなぜそれほどランダムなのか、深く考えたことはありますか?

今年はAI分野で大規模言語モデル(LLM)が注目され、OpenAIのChatGPTやGPT-4が大人...

マイクロソフト、学習者の読解力向上を支援する独立AIツール「リーディングコーチ」を発表

IT Homeは1月19日、マイクロソフトが最近、学生向けの新しい生成AIツール「Reading C...