機械学習においてデータ品質はどの程度重要ですか?

機械学習においてデータ品質はどの程度重要ですか?

今日、機械学習は組織の複数の事業部門にわたって重要な機能になりつつあります。機械学習プログラムはデータに基づいて実行され、よく整備されたエンジンのように、機械をトレーニングするには大量のデータが必要です。ただし、望ましい最終結果を達成するには、大量のデータよりも、優れたデータ品質が重要です。

データ管理はデータの品質を扱い、分析アプリケーションによって提供される出力を信頼できるものにします。分析アプリケーションにより、企業は業界内での自社の位置を把握できます。テクノロジー業界で現在行われている分析の進歩は目覚ましいものですが、データ品質の点では、まだ標準に達しておらず、機械学習プログラムに依存する企業にとって有害となる可能性があります。

[[386573]]

よりクリーンなデータ

機械学習システムにはさらに多くのデータが必要ですが、そのデータはどこにあるのでしょうか? 小売業界を例にとると、データは何年も収集できます。データが抽出され収集されたら、その品質を判断する必要があります。機械学習エンジニアの仕事は、まさにそれを実行し、ビジネスの観点からデータを理解可能なコンテキストに配置することです。

機械学習エンジニアの責任

エンジニアの第一の責任は、顧客と顧客ベースのニーズを理解することです。つまり、企業はまず、機械学習を特定のビジネス モデルに適合させる方法について指導してくれる機械学習コンサルタントと協力する必要があります。次に、機械学習エンジニアはドメイン専門家の協力を得てシステムからのデータの処理を開始し、データにラベルを付けて分類します。それが問題なのです。ほとんどの機械学習プロジェクトは、ドメインの専門家なしで実施されます。これにより、データの誤分類、オペレーターのエラー、または機械学習システムによる出力に関する誤った仮定が発生する可能性があります。

機械学習エンジニアは、最初からデータの分類にほとんどの時間を費やすため、機械学習製品に最初から不適切なデータが与えられると、そこからエラーが悪化します。これにより、教師なし機械学習が実現しました。

教師ありおよび教師なし機械学習

教師あり機械学習は、入力/出力ペアの例を使用して、関数を対応する用語にマッピングするプロセスです。このようなモデルを使用すると、データ エラーなしで最初からパフォーマンスを測定できます。

教師なし機械学習はこれに矛盾します。ラベル付けされたデータがなく、アルゴリズムのパフォーマンスを測定する実用的な方法がありません。このようなプログラムの目的は、データの基礎となる構造を見つけ出し、それをさまざまなカテゴリに分類することです。しかし、教師なし機械学習には利点があります。これらのアルゴリズムは、人間には馴染みのないデータのパターンを認識することができます。したがって、機械学習のアプローチを選択するときは、ビジネスにおけるその使用方法を理解することが重要です。

機械学習ではデータの品質が重要です。必要なデータ品質がビジネス要件を満たしていない場合、教師なし機械学習が救世主となります。 AI ベースのプログラムでデータを評価することで、正確なビジネス洞察を提供できます。しかし、ビジネスに万能な解決策は存在しません。

<<:  自動運転の 6 つのレベル: 真の無人運転までどれくらいの距離があるのでしょうか?

>>:  最短経路問題の探究: ダイクストラのアルゴリズム

推薦する

Microsoft Azure AI テキスト読み上げサービスのアップグレード: 新しい男性の声とより多くの言語サポート

8月9日、Microsoft Azureは企業向けにクラウドベースのサービスと機能を多数提供開始しま...

2021年に機械学習を学ぶには?この詳細なガイドがあなたをカバーします!

「すべての人にAI」の時代を迎え、多くの人が機械学習(ML)に何らかの形で触れるようになりました。...

スマートホームテクノロジーを通じて AI があなたの家を乗っ取るでしょうか?

スマートホーム テクノロジーは、家電製品、ホーム セキュリティ、照明、エンターテイメントを強化します...

マシンビジョンは人工知能を複数の業界に根付かせる

インターネットと人工知能が2019年全国人民代表大会で最もホットな話題の一つになることは間違いありま...

マイクロソフト、精度を80%以上に向上させるAIコードレビューツールを発表

Microsoft は、大規模言語モデルのパフォーマンスを向上させる新しいツール、Jigsaw を発...

OpenAIはChatGPTを軍事目的で使用する予定か?国防総省との協力禁止が解除、元グーグルCEO「AIは核爆弾になる」

AIの兵器化?大規模言語モデルの誕生以来、人々はその潜在的な影響について議論し続けています。しかし...

この記事は人工知能を始める上で強力な助けとなるでしょう

[[269504]]人工知能はまるでまだ遠い未来の話であるかのように語られていますが、実際にはすでに...

Golang AI開発: アプリケーションにAIを統合する

[[442273]]みなさんこんにちは。プログラマーのファントムです。将来の世代のために素晴らしいア...

ChatGPTにはファイル分析や自動検索などの新機能がある。スタートアップ企業の製品は置き換えられるのだろうか?

最近、OpenAIはChatGPT Plusメンバー向けに新しいベータ機能を開始しました。これには主...

Google 検索に AI による要約、定義、コーディングの改善が追加

Google 検索に AI による要約、定義、コーディングの改善が追加Google は、約 3 か月...

自動運転は衛生分野に適用され、問題点に直接対処し、将来性が期待できる

自動運転技術の開発は加速しており、商業的な検討も日々増加しています。現段階では、業界では貨物輸送と旅...

マイクロソフト、機械学習モデル向けの高性能推論エンジン ONNX をオープンソース化

Microsoft は、Linux、Windows、Mac プラットフォーム向けの ONNX 形式の...

マイクロソフトが新たなAIアクセス原則を発表、同社史上最大の投資計画

IT Homeは2月27日、2024年のモバイル・ワールド・コングレスでマイクロソフトのブラッド・ス...

研究は、人工知能が手術後のオピオイド使用を減らすのにどのように役立つかを示している

ペンシルベニア大学医学部が最近実施した研究では、人工知能がオピオイド乱用と戦うためにどのように使用で...

ビッグデータとAIの未来は1つに集約される

ビッグデータ、分析、AI に関しては、価値はデータの収集から(あるいはそこから何らかの洞察を引き出す...