速報です! ImageNetデータセット内のすべての顔はぼかされている

速報です! ImageNetデータセット内のすべての顔はぼかされている

2012 年、AI 研究者はコンピューター ビジョンで大きな進歩を遂げ、ImageNet として知られるデータセットは現在でも何千もの AI 研究プロジェクトや実験で使用されています。しかし先週、データセット管理者がプライバシー保護のため顔画像をぼかすことを決定したため、ImageNet 上のすべての顔画像が突然消えてしまった。

ImageNet データセットのキュレーターは、今日のディープラーニングの進歩への道を切り開きました。現在、彼らは人々のプライバシーを保護するために、データセットを難読化するというもう一つの大きな一歩を踏み出しています。

[[387952]]

2012 年、AI 研究者は、膨大な画像コレクションのおかげで、コンピューター ビジョンの分野で大きな進歩を遂げました。

このデータセットには、インターネットから収集され、手作業でラベル付けされた写真に写っている何千もの日常的な物体、人物、シーンが含まれています。

ImageNet と呼ばれるこれらのデータセットは、現在でも何千もの AI 研究プロジェクトや実験で使用されています。

しかし先週、データセットの管理を担当する研究者が顔にぼかしを入れることにしたため、ImageNet 上の顔がすべて突然消えてしまった。

ImageNet が AI の新時代の到来に貢献したのと同様に、それを修正するには、主に無数の AI プログラム、データセット、製品への影響と課題という点で、多くの課題があります。

「私たちはプライバシーを懸念しています」と、ImageNetプロジェクトの共同リーダーであるプリンストン大学の助教授オルガ・ルサコフスキー氏は語った。

[[387953]]

2012 年、コンピューター科学者たちは画像内の物体を認識できるアルゴリズムの開発に取り組んでおり、ImageNet はまさにそれを実現するために作成されました。

そして、ラベル付けされた例をニューラルネットワークに与えて「学習」させるディープラーニングと呼ばれる技術が、従来の方法よりも効果的であることが示されました。

それ以来、ディープラーニングは人工知能のルネッサンスを推進する一方で、この分野の欠陥も明らかにしてきました。

たとえば、顔認識はディープラーニングの特に人気があり有望な応用であることが証明されていますが、議論の余地もあります。

米国のいくつかの都市では、このプログラムは白人以外の人の顔を認識する精度が低いため、市民のプライバシーが侵害される懸念から、政府によるこの技術の使用を禁止している。

ImageNet には 150 万枚の画像と約 1,000 個のラベルが含まれています。これは主に、機械学習アルゴリズムのパフォーマンスを評価したり、特定のコンピューター ビジョン タスクを実行するアルゴリズムをトレーニングしたりするために使用されます。

今日、243,198 枚の写真がぼかされました。

[[387954]]

ルサコフスキー氏は、ImageNetチームは、物体を認識する能力を変えずにデータセット内の顔をぼかすことが可能かどうかを調べたかったと語った。

「人々がデータに登場するのは、これらの物体を写したオンライン写真に偶然登場しているからです」と彼女は語った。

つまり、ビール瓶が写っている写真で、ビールを飲んでいる人の顔にピンク色のシミがあっても、ビール瓶自体には何の影響もありません。

[[387955]]

ImageNetのアップデートと同時に発表された研究論文の中で、データベースのチームは、アマゾンのAIサービス「Rekognition」を使って顔をぼかしたと説明した。

その後、彼らは Mechanical Turk の作業員に報酬を支払い、選択内容の確認と微調整を行った。

研究者らによると、顔をぼかしても、ImageNetで訓練されたいくつかの物体認識アルゴリズムのパフォーマンスには影響がなかったという。

また、これらの物体認識アルゴリズムを使用して構築された他のアルゴリズムも同様に影響を受けないことも示されました。

「この概念実証が、現場でのよりプライバシーに配慮した視覚データ収集の実践への道を開くことを期待しています」とルサコフスキー氏は語った。

2019年12月、ImageNetチームは、Mining AIと呼ばれるプロジェクトがこの問題に注目したことを受けて、人間によるラベル付けによってもたらされた偏見のある侮辱的な用語を削除しました。

研究では、データセット内の個人を特定できることが示され、その中にはコンピューターサイエンスの研究者も含まれている。また、ポルノ画像も含まれていたことが判明した。

プラブー氏は、顔をぼかすのは良いことだが、イメージネットチームが彼とビル・ハーン氏の研究を認めなかったことに失望したと語った。ルサコフスキー氏は、論文の最新版に引用文が掲載される予定だと述べた。

顔をぼかすと、ImageNet データでトレーニングされたアルゴリズムに予期しない結果が生じる可能性があります。たとえば、アルゴリズムは、特定のオブジェクトを検索するときに、ぼやけた顔を探すように学習する場合があります。

「考慮すべき重要な問題は、ぼかした顔を含むデータセットにモデルを展開すると何が起こるかということです」とルサコフスキー氏は述べた。

たとえば、このデータセットでトレーニングされたロボットは、現実世界の顔を認識できないため、廃棄される可能性があります。

MIT の研究科学者である Aleksander Madry 氏は、ImageNet の限界を発見しました。彼は、ぼかした顔を含むデータセットでトレーニングされた AI モデルは、顔を含む画像を見せられたときに奇妙な動作をする可能性があると主張しています。

「データの偏りは非常に微妙なものですが、同時に重大な結果をもたらす可能性があります」と彼は言います。「だからこそ、機械学習の文脈で堅牢性と公平性について考えるのは非常に難しいのです。」

しかし、最近の国内の「315」では、AI企業によるプライバシー権の侵害の問題も浮上しています。私は、すべてのAI企業が技術開発を行う際に、こうした付随的な問題に配慮してくれることを依然として望んでいます。

<<:  顔認識は3月15日に再び命名されました。データのプライバシーとセキュリティをどのように保護するのでしょうか?

>>:  誰が私たちの個人情報をスパイしているのでしょうか?顔認識の悪用

ブログ    
ブログ    

推薦する

Facebook がアルゴリズム コード ライブラリ PySlowFast をオープンソース化、最先端のビデオ理解モデルを簡単に再現

Facebook AI Research は近年、ビデオ理解研究において多くの素晴らしい成果を上げて...

AIのデジタルシールド:インフラのサイバーセキュリティ戦略の強化

技術革新の時代において、人工知能 (AI) は変革の力として際立っています。パーソナライズされた推奨...

人工知能、機械学習、データマイニング、データ分析の関係は何ですか?

人工知能は現在、注目されている分野です。すべてのインターネット企業や著名人が、人工知能はインターネッ...

農産物産業における人工知能の応用と影響

農産物における人工知能の応用人工知能は、次のような農産物のあらゆる段階と側面に適用できます。農業: ...

快手が手の姿勢推定機能を発表、電光手の秘密を公式に公開

アイアンマンは指と手のひらを回すだけで、あっという間に鎧の製作を完了した。この魔法のような技に、スク...

外国メディアが報じたところによると、EUはデータプライバシーを弱めるため、エンドツーエンドの暗号化にバックドアを検討している。

インド、米国、英国、オーストラリアに続き、エンドツーエンドの暗号化は欧州連合から厳しい監視を受けてい...

マスク氏はAIに無料でデータを取得させない:Twitterは閉鎖され、ログインしないと誰も見ることができない

現在、Twitter アカウントにログインしないと、Twitter コンテンツの Web バージョン...

神経科学者の探求:機械が意識を獲得する方法

アレックス・ガーランド監督の2015年大ヒット作『エクス・マキナ』では、監督が意図したように、機械の...

人工知能がデジタル時代の教師の変革を促進

2021年人工知能と教育に関する国際会議では、人工知能と教育・指導の深い融合を推進し、人工知能を利用...

BAIRの最新のRLアルゴリズムはGoogle Dreamerを上回り、パフォーマンスが2.8倍向上しました。

ピクセルベースの RL アルゴリズムが復活しました。BAIR は対照学習と RL を組み合わせたアル...

AIとのダンスは次世代の労働者にとって必修科目

AI人材の不足は何も新しいことではありません。高い給与と高い教育がそれに付随することが多いです。 J...

どのような Android の知識を学ぶ必要がありますか?ナレッジグラフ

コア分析コンテンツ初心者および中級の Android 開発者にとって、学ぶべき Android の理...

限定ダウンロード! Alibaba は AI をどのように活用してコードを記述しているのでしょうか?

[[315476]]今年のアリババ経済フロントエンド委員会の4つの主要な技術方向の1つとして、フロ...

...

ディープラーニングと比較すると、この新しいアルゴリズムの方が優れているようですね?

ニューラル ネットワーク アルゴリズムと機械学習における人類の現在の成果に基づくと、コンピューター ...