速報です! ImageNetデータセット内のすべての顔はぼかされている

速報です! ImageNetデータセット内のすべての顔はぼかされている

2012 年、AI 研究者はコンピューター ビジョンで大きな進歩を遂げ、ImageNet として知られるデータセットは現在でも何千もの AI 研究プロジェクトや実験で使用されています。しかし先週、データセット管理者がプライバシー保護のため顔画像をぼかすことを決定したため、ImageNet 上のすべての顔画像が突然消えてしまった。

ImageNet データセットのキュレーターは、今日のディープラーニングの進歩への道を切り開きました。現在、彼らは人々のプライバシーを保護するために、データセットを難読化するというもう一つの大きな一歩を踏み出しています。

[[387952]]

2012 年、AI 研究者は、膨大な画像コレクションのおかげで、コンピューター ビジョンの分野で大きな進歩を遂げました。

このデータセットには、インターネットから収集され、手作業でラベル付けされた写真に写っている何千もの日常的な物体、人物、シーンが含まれています。

ImageNet と呼ばれるこれらのデータセットは、現在でも何千もの AI 研究プロジェクトや実験で使用されています。

しかし先週、データセットの管理を担当する研究者が顔にぼかしを入れることにしたため、ImageNet 上の顔がすべて突然消えてしまった。

ImageNet が AI の新時代の到来に貢献したのと同様に、それを修正するには、主に無数の AI プログラム、データセット、製品への影響と課題という点で、多くの課題があります。

「私たちはプライバシーを懸念しています」と、ImageNetプロジェクトの共同リーダーであるプリンストン大学の助教授オルガ・ルサコフスキー氏は語った。

[[387953]]

2012 年、コンピューター科学者たちは画像内の物体を認識できるアルゴリズムの開発に取り組んでおり、ImageNet はまさにそれを実現するために作成されました。

そして、ラベル付けされた例をニューラルネットワークに与えて「学習」させるディープラーニングと呼ばれる技術が、従来の方法よりも効果的であることが示されました。

それ以来、ディープラーニングは人工知能のルネッサンスを推進する一方で、この分野の欠陥も明らかにしてきました。

たとえば、顔認識はディープラーニングの特に人気があり有望な応用であることが証明されていますが、議論の余地もあります。

米国のいくつかの都市では、このプログラムは白人以外の人の顔を認識する精度が低いため、市民のプライバシーが侵害される懸念から、政府によるこの技術の使用を禁止している。

ImageNet には 150 万枚の画像と約 1,000 個のラベルが含まれています。これは主に、機械学習アルゴリズムのパフォーマンスを評価したり、特定のコンピューター ビジョン タスクを実行するアルゴリズムをトレーニングしたりするために使用されます。

今日、243,198 枚の写真がぼかされました。

[[387954]]

ルサコフスキー氏は、ImageNetチームは、物体を認識する能力を変えずにデータセット内の顔をぼかすことが可能かどうかを調べたかったと語った。

「人々がデータに登場するのは、これらの物体を写したオンライン写真に偶然登場しているからです」と彼女は語った。

つまり、ビール瓶が写っている写真で、ビールを飲んでいる人の顔にピンク色のシミがあっても、ビール瓶自体には何の影響もありません。

[[387955]]

ImageNetのアップデートと同時に発表された研究論文の中で、データベースのチームは、アマゾンのAIサービス「Rekognition」を使って顔をぼかしたと説明した。

その後、彼らは Mechanical Turk の作業員に報酬を支払い、選択内容の確認と微調整を行った。

研究者らによると、顔をぼかしても、ImageNetで訓練されたいくつかの物体認識アルゴリズムのパフォーマンスには影響がなかったという。

また、これらの物体認識アルゴリズムを使用して構築された他のアルゴリズムも同様に影響を受けないことも示されました。

「この概念実証が、現場でのよりプライバシーに配慮した視覚データ収集の実践への道を開くことを期待しています」とルサコフスキー氏は語った。

2019年12月、ImageNetチームは、Mining AIと呼ばれるプロジェクトがこの問題に注目したことを受けて、人間によるラベル付けによってもたらされた偏見のある侮辱的な用語を削除しました。

研究では、データセット内の個人を特定できることが示され、その中にはコンピューターサイエンスの研究者も含まれている。また、ポルノ画像も含まれていたことが判明した。

プラブー氏は、顔をぼかすのは良いことだが、イメージネットチームが彼とビル・ハーン氏の研究を認めなかったことに失望したと語った。ルサコフスキー氏は、論文の最新版に引用文が掲載される予定だと述べた。

顔をぼかすと、ImageNet データでトレーニングされたアルゴリズムに予期しない結果が生じる可能性があります。たとえば、アルゴリズムは、特定のオブジェクトを検索するときに、ぼやけた顔を探すように学習する場合があります。

「考慮すべき重要な問題は、ぼかした顔を含むデータセットにモデルを展開すると何が起こるかということです」とルサコフスキー氏は述べた。

たとえば、このデータセットでトレーニングされたロボットは、現実世界の顔を認識できないため、廃棄される可能性があります。

MIT の研究科学者である Aleksander Madry 氏は、ImageNet の限界を発見しました。彼は、ぼかした顔を含むデータセットでトレーニングされた AI モデルは、顔を含む画像を見せられたときに奇妙な動作をする可能性があると主張しています。

「データの偏りは非常に微妙なものですが、同時に重大な結果をもたらす可能性があります」と彼は言います。「だからこそ、機械学習の文脈で堅牢性と公平性について考えるのは非常に難しいのです。」

しかし、最近の国内の「315」では、AI企業によるプライバシー権の侵害の問題も浮上しています。私は、すべてのAI企業が技術開発を行う際に、こうした付随的な問題に配慮してくれることを依然として望んでいます。

<<:  顔認識は3月15日に再び命名されました。データのプライバシーとセキュリティをどのように保護するのでしょうか?

>>:  誰が私たちの個人情報をスパイしているのでしょうか?顔認識の悪用

ブログ    
ブログ    

推薦する

データが増えるほど、AIの意思決定モデルは脆弱になる

データは人工知能システムを構築するために必要な重要なインフラストラクチャです。データは、AI システ...

...

Google が 17 分野を網羅し 18,000 の注釈を付した大規模な対話コーパスを公開

Google アシスタントのような AI アシスタントは、追加データや再トレーニングを必要とせずに、...

Google DeepMind共同創設者:2028年までに人類がAGIを達成する可能性は50%

10月31日、テクノロジー系ポッドキャスト「Dwarkesh Patel」によると、Googleの...

負荷分散アルゴリズムの完全なリスト

負荷分散の開発基盤は負荷分散アルゴリズムです。次に、サーバーごとに持つ機能や必要な機能が異なるため、...

NBA スターと機械学習が出会うと...

[[282801]]私はバスケットボールが好きです。私はバスケットボールをしたり、観戦したり、バス...

バイトダンスの最新のテキスト生成画像AIには、トレーニングセットにテキスト説明付きの画像が含まれていません。

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

...

星が輝くとき - WOT グローバル テクノロジー イノベーション カンファレンス 2021 が間もなく開催されます

【51CTO.comオリジナル記事】​​​ 100年前、シュテファン・ツヴァイクは彼の有名な著作「星...

言語学における人工知能技術の応用

1990年代初頭、中国の著名な学者である周海中氏は、人工知能技術がさまざまな分野で広く使用され、予想...

PyTorch を学ぶには?簡単すぎる

多くの友人から、PyTorch の学習方法を尋ねられました。長期間の練習を経て、初心者が知っておく必...

PageRankアルゴリズムとPR値の転送の詳細な分析

PageRank アルゴリズムは、Google のランキング アルゴリズム (ランキング式) の一部...

デジタル変革とAIイノベーションが銀行業界を新たな時代へ導く

急速な技術進歩と規制環境の変化が進む時代において、銀行が競争力を維持し、規制に準拠する必要性がかつて...

アイティ族テクニカルクリニック第6回

【51CTO.comオリジナル記事】 [51CTO オリジナル記事、パートナーサイトに転載する場合は...