グラフディープラーニングで複雑な研究​​タイプのタスクを実装するのは、あまりにも面倒ですか?この新しいツールキットは、

グラフディープラーニングで複雑な研究​​タイプのタスクを実装するのは、あまりにも面倒ですか?この新しいツールキットは、

ディープラーニングは、AI分野で最も注目されている分野の1つです。現在、PyGやDGLなどの主流のグラフディープラーニングフレームワークは、主にグラフディープラーニングの基本的な操作とモデルを実装しており、複雑なグラフディープラーニングの研究課題に対処するのは困難です。最近、テキサス A&M 大学の Shuiwang Ji 教授のチームは、グラフ生成、グラフ自己教師学習、グラフニューラルネットワークの解釈可能性、3D グラフディープラーニングタスクなど、複雑な研究​​タスク向けの初のスケーラブルなグラフディープラーニングツールキットを開発しました。このツールキットの目的は、研究者が複雑なグラフディープラーニングタスクのアルゴリズム開発において、共通のデータセットと評価指標を使用して共通のベンチマークと比較しやすくすることです。

グラフ ディープラーニングは、豊富なグラフ構造データからの学習においてその有効性を実証しています。また、新薬の発見、ソーシャル ネットワーク、物理シミュレーションなど、多くの問題において大きな進歩が遂げられています。多くのグラフ ディープラーニング フレームワーク (PyG、DGL など) は、主に基本的なグラフ ディープラーニング モジュールと、ノード分類やグラフ分類などの基本タスクの実装に重点を置いています。しかし、グラフ生成やグラフニューラルネットワークの解釈可能性などの複雑なタスクの場合、研究者はアルゴリズムを実装し、それをベンチマークモデルと比較するために依然として多大な労力を費やす必要があります。

この問題を解決するために、テキサス A&M 大学の Shuiwang Ji 教授が率いる DIVE (データ統合、視覚化、探索) 研究所は、複雑な研究​​タスク向けの初のグラフ ディープラーニング ツールキット DIG (Dive into Graphs) をオープンソース化しました。ツールキットは、研究室の 16 人のチーム (博士課程の学生 14 人、学部生 1 人、指導者 1 人) によって 1 年かけて完成されました。 PyG や DGL などのグラフ ニューラル ネットワーク フレームワークとは異なり、DIG は、現在人気の高い複雑なグラフ ディープラーニング研究タスク向けに、より使いやすく、より高速で、よりスケーラブルなアルゴリズム開発および比較研究プラットフォームを提供することに重点を置いています。

現在、DIG ツールキットは、グラフ生成、グラフ自己教師学習、グラフニューラルネットワークの解釈可能性、3D グラフディープラーニングの 4 つの研究方向をサポートしています。 DIG は、各分野に対して、共通かつ拡張可能なデータ インターフェイス、共通アルゴリズム、評価標準の実装を提供します。

要約すると、DIG は研究者のアルゴリズム開発とベンチマーク モデルとの実験比較を大幅に促進します。

  • 論文アドレス: https://arxiv.org/abs/2103.12608

  • プロジェクトアドレス: https://github.com/divelab/DIG

現在、DIG は 4 つの研究方向で 18 のアルゴリズム、33 のデータセット、7 種類の評価指標をカバーしています。汎用的で拡張可能な実装に基づいて、将来的にはさらに多くの指示とアルゴリズムを DIG に統合できます。ツールキットの全体的な構造を下図に示します。

DIG は 4 つの主要な方向をカバーします。

グラフ生成: グラフ生成アルゴリズムは、指定されたグラフ データ セットに基づいて新しいグラフを生成する方法を研究します。グラフ生成タスクは、医薬品や材料の開発において潜在的に重要な用途を持っています。そのため、DIG では分子グラフを生成できるディープラーニング アルゴリズムを主に検討します。同時に、DIG は、ランダム生成、分子特性の最適化、制約付き分子特性の最適化を評価するための関連指標も実装します。

グラフ上の自己教師学習: 自己教師学習の研究は最近、グラフ データにまで拡張され、特定の自己教師タスクを使用することで、モデルがより効果的なグラフ機能表現を取得できるようになりました。現在、DIG は主に対照学習に基づく共通グラフ自己監督アルゴリズムを実装し、ノード分類とグラフ分類のデータ インターフェースと評価指標を提供しています。

グラフ ニューラル ネットワークの解釈可能性: グラフ ニューラル ネットワークが実際のアプリケーションに導入されるケースが増えるにつれて、モデルをより深く理解するために、グラフ ニューラル ネットワークの解釈可能性に関する研究が重要になってきました。一般的なグラフ ニューラル ネットワーク解釈アルゴリズムが DIG に実装されています。 DIG 開発者は、一般的に使用されるベンチマーク データセットと評価メトリックに加えて、解釈可能性タスク用のテキスト データから人間が理解できるグラフ データセットも構築し、グラフ ニューラル ネットワークの解釈可能性に関するその後の研究を大幅に促進しました。

3D グラフ ディープラーニング: 3D グラフ ネットワークとは、ノードが 3 次元の位置情報を持つグラフ ネットワーク構造を指します。たとえば、分子内の各原子には相対的な 3D 位置があります。グラフ構造における3D位置情報は、グラフネットワークの表現能力を向上させる上で重要な役割を果たすと考えられます。 DIG は、3 つの最新の 3D グラフ ディープラーニング アルゴリズムを 3DGN フレームワークに統合し、統一された実装を提供します。また、一般的な 3D 分子データセット用の統一されたインターフェースと評価メトリックも実装します。

主要な設計ガイドライン

共通実装: DIG には、各研究方向のデータ インターフェイスと評価方法の共通実装があります。これにより、DIG は標準化されたテスト プラットフォームとして機能できるようになります。さらに、ある観点から統一できるアルゴリズムについては、DIG は一般的なアルゴリズム実装も提供します。たとえば、3D グラフのディープラーニング用の 3DGN フレームワークや、グラフの自己教師学習用の比較モデル フレームワークなどです。

スケーラビリティとカスタマイズ性: 共通の実装により、研究者は新しいデータセット、アルゴリズム、評価基準を簡単に統合できます。さらに、ユーザーはデータインターフェースと評価方法を柔軟に選択して実験をカスタマイズできます。したがって、DIG は、研究者が新しいアルゴリズムを実装し、ベンチマーク アルゴリズムとの実験的な比較を実行するためのプラットフォームとして使用できます。

<<:  練習問題をやるのが苦痛すぎる場合はどうすればいいですか?このアルゴリズムベースは初心者向けにカスタマイズされており、アニメーションが付属しています

>>:  Pytorch モデルのトレーニングを最適化するためのヒント

推薦する

普通の文書も会話に変えられる:会話補完技術の深い理解

会話型ロボットと聞くと、私と同じように、SiriやAlexaとの会話をすぐに思い浮かべますか?時には...

DL時代のコード補完ツールは言語モデルよりもはるかに効果的である

プログラマーからデータ エンジニアまで、プログラム コードを書くことは基本的なスキルですが、長いコー...

時空間AI技術:スマートシティ分野における深層強化学習の応用入門

深層強化学習は近年人気が出てきている技術です。深層強化学習の制御および意思決定プロセスには、状態、ア...

マイクロソフトがAR仮想「翻訳機」をデモ、将来の翻訳業界に影響を与える

7月22日のニュース:AR技術は継続的な発展により、徐々に成熟してきました。他の新しいテクノロジーと...

...

二度とアルゴリズムの罠に陥らないでください!背後にいる人物を見つけ出す

誰もがこのような経験をしたことがあると思います。道路を運転しているとき、携帯電話は位置情報と速度を送...

ポストエピデミック時代:医療業界で成功するには?

この記事は公開アカウント「Reading Core Technique」(ID: AI_Discov...

ザッカーバーグ氏がCharacter.AIの1:1レプリカである仮想チャットAIをリリース?ユーザーの不満: 設定が古すぎる

ユーザーがTikTokにどんどん奪われ、毎日のアクティブユーザー数が減り続けているという現実に直面し...

革新を続ける: 6月のロボット研究開発の概要

近年、人工知能への熱狂が多くの業界を席巻しており、ロボット工学の分野も例外ではありません。人工知能技...

人工知能と機械学習モデル向けのオープンソースフレームワークトップ5

[[253697]] [51CTO.com クイック翻訳] 過去 10 年間の人工知能の急速な成長...

ゴールドマン・サックスはAIGCの徹底的な試験を計画的に実施している

AI を取り巻く大騒ぎを考えると、フォーチュン 500 企業が必死になって LLM を実用化し、アメ...

トイレに座ってアルゴリズムを読む: わずか5行のフロイドの最短経路アルゴリズム

[[110550]]夏休みの間、シャオ・ヘンはいくつかの都市を旅行する予定です。下の図に示すように、...

AI が顧客中心主義で債権回収サイクルを変革する方法

[[431145]]過去1年間、COVID-19パンデミックにより、多くの業界が開発戦略を再考し、変...

...

人工知能の時代において、従来のメディアはどのようにしてニュースの取り組みを守ることができるのでしょうか?

海外メディアの報道によると、人工知能によるニュースのパーソナライゼーションの時代では、従来の報道機関...