Nvidia の新しいブラック テクノロジーが「Minecraft」のモザイクをリアルな大ヒット作に変える

Nvidia の新しいブラック テクノロジーが「Minecraft」のモザイクをリアルな大ヒット作に変える

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載しています。転載の際は出典元にご連絡ください。

島の大ヒット作を見てみましょう。

これは写真家の作品ではなく、GANcraft の作品です。

元画像は「Minecraft」のモザイク品質のシーンです。

今、「私の世界」は本当に私の世界になりました!

NVIDIA とコーネル大学のコラボレーションによる GANcraft は、大規模な 3D ブロック世界をリアルな画像に生成できる、教師なし 3D ニューラル レンダリング フレームワークです。

かつてない現実感

それはどれくらい現実的ですか?他のモデルと比較すると。

以下は、MUNIT、GauGAN で使用される SPADE、wc-vid2vid、および NSVF-W (NSVF+NeRF-W) を使用して 2 つのシナリオで生成された効果です。

GANcraftの効果を見てみましょう: (色と画質は圧縮されています)

比較すると次のことがわかります。

MUNIT や SPADEなどの Im2im (画像間変換) 方式では、モデルに 3D ジオメトリの知識がなく、各フレームが独立して生成されるため、視点の一貫性を維持できません。

wc-vid2vid はビュー一貫性のあるビデオを生成しますが、トレーニング テスト領域でのブロック状のジオメトリとエラーの蓄積により、時間の経過とともに画像の品質が急速に低下します。

NSVF-Wもビューと一致する出力を生成しますが、色がくすんで見え、詳細が欠けています。

GANcraftによって生成された画像は、高品質でありながらビューの一貫性を維持します。

これはどうやって行うのですか?

原則の概要

GANcraft のニューラル レンダリングの使用によりビューの一貫性が確保され、革新的なモデル アーキテクチャとトレーニング スキームによりこれまでにないリアリズムが実現されます。

具体的には、研究者らは、Hybird ボクセル条件付きニューラル レンダリング手法を使用して、3D ボリューム レンダラーと 2D 画像空間レンダラーを組み合わせました。

まず、ボクセル(つまり、ボリューム要素)で囲まれた神経放射フィールドが定義され、学習可能な特徴ベクトルがブロックの各コーナーに割り当てられます。

三線補間を使用して、ボクセル内の任意の場所に位置コードが定義され、世界を連続的なボリューム関数として表現します。また、各ブロックには、土、草、水などのセマンティック ラベルが割り当てられます。

次に、MLP を使用して放射輝度フィールドが暗黙的に定義されます。MLP は、位置コード、セマンティック ラベル、共有スタイル コードを入力として受け取り、ポイント フィーチャ (放射輝度に類似) とそのボリューム密度を生成します。

最後に、カメラのパラメータが与えられ、放射フィールドをレンダリングすることによって 2D 特徴マップが取得され、CNN を使用して画像に変換されます。

ボクセル条件付きニューラルレンダリングモデルを構築することは可能ですが、グラウンドトゥルースとして使用できる画像はありません。このため、研究者は敵対的トレーニング方法を採用しました。

しかし、Minecraft は現実世界とは異なり、シーンが完全に雪や水に覆われていたり、1 つのエリアに複数のバイオームが出現したりするなど、ブロックのラベル分布がまったく異なることがよくあります。

インターネットの写真を使った敵対的トレーニングでは、ランダムにサンプリングすると非現実的な結果が生成されます。

そのため、研究者はトレーニングのために疑似グラウンドトゥルースを生成します。

事前トレーニング済みの SPADE モデルを使用して、2D セマンティック セグメンテーション マスクを通じて、同じセマンティクスを持つ疑似グラウンド トゥルース画像が取得されます。

これにより、ラベルと画像の割り当て間の不一致が軽減されるだけでなく、損失が強くなり、より高速で安定したトレーニングが可能になります。生成パフォーマンスが大幅に向上しました:

さらに、GANcraft を使用すると、ユーザーはシーンのセマンティクスと出力スタイルを制御できます。

紹介ページには次のように書かれています: 「Minecraft プレイヤー全員が 3D アーティストに変身します!」

さらに、複雑な風景シーンの 3D モデリング プロセスが簡素化され、長年の専門知識が不要になります。

GANcraft はまもなくオープンソースになります。興味のある方はリンクをクリックして詳細をご覧ください。

参考リンク:
[1] https://nvlabs.github.io/GANcraft/
[2] https://arxiv.org/abs/2104.07659
[3] https://news.ycombinator.com/item?id=26833972

<<:  Google、Amazon、Microsoft – 人工知能の競争をリードするのは誰か?

>>:  グラフアルゴリズムシリーズ: 無向グラフのデータ構造

ブログ    
ブログ    
ブログ    
ブログ    

推薦する

...

...

アルゴリズムの練習とプログラミング学習に最適な 6 つの Web サイト

Google や Facebook のアルゴリズムを理解しなければ、面接に合格することはできません。...

無人トラックで商品を配達しますか?アマゾンが自動運転車の特許を申請

[51CTO.com からのオリジナル記事] 現在、ドローンは間違いなくアマゾンの物流ネットワークで...

...

...

百度CTO王海鋒氏:オープンソースは技術革新と産業発展の原動力である

12月20日、国家深層学習技術応用工程研究室と百度が共催するWAVE SUMMIT+2020深層学習...

自動運転の認識、予測、計画技術の分析

自動運転 (AD) とインテリジェント車両 (IV) への関心が高まっているのは、安全性、効率性、経...

Volcano Engine は Deepin Technology が業界初の 3D 分子事前トレーニング モデル Uni-Mol をリリースするのを支援します

新薬の継続的な登場により、人間の生活の質と平均寿命はある程度向上しました。医薬品設計の分野では、薬物...

AI技術がデータセンターの省エネに向けた新たな戦いに参入

序文: 2020年、データセンター建設は中央政府による新インフラ戦略に正式に組み込まれ、新インフラの...

人工知能は世界をどう変えるのか:BBCがAIのAからZまでをまとめる

今日、人工知能はもはや漠然とした研究室の技術ではなく、私たちの生活のあらゆる側面に組み込まれています...

張漢松: 大ヒットARゲームのルールを解説

[[324671]] 【51CTO.comオリジナル記事】数日前、グローバル モバイル インターネ...

専門家の視点:汎用人工知能の可能性

人工知能分野の発展に関するニュースを追う際の課題の 1 つは、「AI」という用語が、無関係な 2 つ...

...

多くの機械学習戦略が失敗する理由

クラウド コンピューティング サービス プロバイダーの Rackspace Technology が...