Google は、DQN と同等で、より優れた一般化パフォーマンスを備えた 2 つの新しい強化学習アルゴリズムを実装しました。

Google は、DQN と同等で、より優れた一般化パフォーマンスを備えた 2 つの新しい強化学習アルゴリズムを実装しました。

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載しています。転載の際は出典元にご連絡ください。

強化学習 (RL) アルゴリズムは進化し続けています…

Google Research の研究者は、 AutoMLグラフ表現と最適化手法を使用して、解析可能で一般化可能な新しい RL アルゴリズムを学習できることを実証しました。

彼らが発見したアルゴリズムのうち 2 つは、視覚的な観察を伴う Atari ゲームなど、より複雑な設定に一般化できます。

この成果により、RL アルゴリズムはますます改善されます。

「優れている」ことの詳細については、以下を参照してください。

損失関数は計算グラフとして表現される

まず、強化学習アルゴリズムの研究の難しさに関して、研究者たちはメタ学習法を設計することが解決策になると考えています。

このアプローチにより、さまざまなタスクに自動的に一般化される新しい RL アルゴリズムの設計が可能になります。

ニューラルネットワーク構造を表すグラフ空間内を検索するNeural Architecture Search(NAS)のアイデアに触発され、研究者は損失関数を計算グラフとして表現することでRLアルゴリズムをメタ学習します

損失関数は、入力、演算子、パラメーター、出力をそれぞれ表すノードを持つ有向非巡回グラフを使用して表されます。

この表現には多くの利点があり、一般的には、新しい、解析可能で一般化可能な RL アルゴリズムを学習するために使用できます。

そして、この表現を実装するには PyGlove ライブラリを使用します。

進化に基づくメタ学習法

次に、研究者たちは進化に基づくメタ学習アプローチを使用して、関心のある RL アルゴリズムを最適化しました。

プロセスはおおよそ次のようになります。

提案されたアルゴリズムは、より困難な環境のセットでトレーニングする前に、まず障害物環境で良好なパフォーマンスを発揮する必要があります。アルゴリズムのパフォーマンスが評価され、集団の更新に使用され、パフォーマンスの優れたアルゴリズムがさらに新しいアルゴリズムに変化します。トレーニングの最後に、最もパフォーマンスの高いアルゴリズムがテスト環境で評価されます。

この実験における集団の規模は約 300 エージェントであり、研究者は 20,000 ~ 50,000 回の突然変異の後、候補損失関数の進化には約 3 日間のトレーニングが必要であることを観察しました。

トレーニングコストをさらに制御するために、DQN (Deep Q Learning Algorithm) などの人間が設計した RL アルゴリズムを最初のグループに埋め込みました。

優れた一般化性能を示した2つのアルゴリズムを発見

最終的に、彼らは優れた一般化性能を示す 2 つのアルゴリズムを発見しました。

1 つはDQNRegで、これは DQN に基づいており、Q 値に加重ペナルティを追加して、標準の二乗ベルマン誤差にします。

2 番目はDQNClippedです。これはより複雑ですが、その支配的な項は Q 値の最大値とベルマン誤差の二乗 (定数係数) という単純な形式です。

どちらのアルゴリズムも Q 値を正規化する方法と見なすことができ、どちらも異なる方法で Q 値を過大評価する問題を解決します

最終的に、DQNReg は Q 値を過小評価しますが、DQNClipped はゆっくりと真実に近づき、決して過大評価することはありません。

パフォーマンス評価に関しては、一連の古典的な制御環境を通じて、両方のアルゴリズムは、密な報酬タスク (CartPole、Acrobot、LunarLander) ではベースラインと同等であり、疎な報酬タスク (MountainCar) ではDQN を上回ることができます

研究者らは、さまざまなタスクをテストするスパース報酬 MiniGrid 環境のセットにおいて、DQNReg がトレーニング環境とテスト環境の両方でサンプル効率と最終パフォーマンスの両方においてベースラインを大幅に上回っていることを発見しました。

さらに、いくつかの MiniGrid 環境で DDQN (Double DQN) と DQNReg のパフォーマンスを視覚的に比較すると、DDQN がまだ意味のある動作をすべて学習するのに苦労しているときに、DQNReg はすでに最適な動作を効果的に学習できることがわかりました。

最後に、この研究のトレーニングは非画像ベースの環境で実行されましたが、画像ベースの Atari ゲーム環境では DQNReg アルゴリズムのパフォーマンスが向上したことが確認できました。

これは、一般化可能なアルゴリズム表現を備えた、安価だが多様なトレーニング環境のセットでのメタトレーニングが、根本的なアルゴリズムの一般化につながる可能性があることを示唆しています。

この研究成果に基づいて書かれた論文は、ICLR 2021に採択されました。研究者らは、今後、Actor-CriticアルゴリズムやオフラインRLなど、より多様なRL設定に研究を拡大していく予定です。

<<:  NLP フィールド インデックス ツール、3000 以上のコード ベース、論文や GitHub ライブラリのワンクリック検索

>>:  フェデレーテッドラーニングも安全ではないのでしょうか? Nvidiaの研究は「プライバシーフリー」データを使用して元の画像を直接再構築します

ブログ    
ブログ    
ブログ    

推薦する

データセンター不足がAIの未来を阻害している理由

多くの企業が AI テクノロジーの開発と導入に数十億ドルを投資しています。知的財産の問題、潜在的な規...

2022 年の AIOps トレンド予測

[[429163]]人工知能、機械学習、自動化などの先進技術の普及により、企業のビジネスシナリオは大...

「大学受験5年間・シミュレーション3年間」の大型模型版が登場! 6141 の数学の問題、マルチモーダルの問題

「大学入試5年間・シミュレーション3年間」の数学の問題集が大幅パワーアップして登場! Microso...

ディープラーニングとツリー探索によるゼロからの高速学習と低速学習

[[211446]]この記事では、ロンドン大学ユニバーシティ・カレッジ (UCL) の Thomas...

...

リチウム電池の防爆結果がネイチャー誌の表紙に登場、UCLAの中国チームが制作

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

人工知能の簡単な歴史 | (1) ディープラーニング、人工知能の新たな盛り上がり

人工知能はまだ少し遠く、Google の巨大なデータセンターの部屋や神秘的な MIT ロボット工学研...

AR テクノロジーは自動車メーカーにとって次の焦点となるのでしょうか?

現在、拡張現実(AR)技術はもはや新しい製品ではありませんが、その適用範囲が限られているため、ARは...

人工知能をうまく実装するにはどうすればよいでしょうか?

人工知能 (AI) と機械学習 (ML) は、ビジネスの流行語から、より広範な企業での導入へと移行し...

GPSを使用しない自動運転システムソリューション

自動運転技術の発展に伴い、未知の環境におけるスマートカーの測位技術がこの分野の研究の中核となっていま...

サイバーセキュリティにおいて人工知能はどのように活用されていますか?

ここでは、ネットワーク セキュリティにおける人工知能の応用について、主にネットワーク セキュリティ防...

...

これはボストンダイナミクスのロボットエンジニアの一日です

[[401177]]ボストン・ダイナミクスは誰もが知っていますが、同社の従業員の仕事や生活について知...

ホーキング博士が亡くなりました。彼が残した5つの予言をぜひ読んでみてください

ガーディアン紙、BBC、スカイニュースチャンネルなど複数の外部情報源によると、英国の物理学者スティー...