150 ページの「幾何学的ディープラーニング」がオンラインになりました: 対称性と不変性を利用して機械学習の問題を解決する

150 ページの「幾何学的ディープラーニング」がオンラインになりました: 対称性と不変性を利用して機械学習の問題を解決する

過去 10 年間、データ サイエンスと機械学習の分野では驚異的な進歩が見られました。ディープラーニング手法の助けを借りて、多くの高次元学習タスク(コンピュータービジョンやタンパク質フォールディングなど)も適切なコンピューティング規模で完了できます。高次元空間における普遍的な関数の学習は非常に難しい問題ですが、ほとんどのタスクに対して方法は普遍的ではなく、物理世界の根底にある低次元性と構造には、いくつかの必要な事前定義された規則性が存在します。

グラフニューラルネットワークと幾何学的ディープラーニングにおける一連の最近の進歩は、機械学習がより詳細かつ複雑な問題を解決するのに役立つことが期待されています。

幾何学的ディープラーニングは、対称性と不変性の観点から一般化された機械学習の問題を幾何学的に統一する試みです。これらの原理は、畳み込みニューラル ネットワークの画期的なパフォーマンスとグラフ ニューラル ネットワークの最近の成功の基盤となっているだけでなく、問題固有の新しい帰納的バイアスを構築するための原理的なアプローチも提供します。

最近、「Geometric Deep Learning」というタイトルの新しい本が出版され、さまざまなアプリケーションに適用できる幾何学的統一原理を通じて規則性を明らかにしています。この「幾何学的統一」には 2 つの意味があります。一方では、CNN、RNN、GNN、Transformer などのニューラル ネットワーク アーキテクチャを研究するための一般的な数学的フレームワークを提供します。一方、これは、以前の物理的知識をニューラル アーキテクチャに統合するための構築的な手順を提供し、いくつかの新しいアーキテクチャを構築するための原理的な方法を提供します。

機械学習アーキテクチャの構築方法を教えます

「幾何学的ディープラーニング、グリッド、グループ、グラフ、測地線、ゲージ」は、ディープラーニング幾何学統合プロジェクトの最初のオンラインブックです。著者によると、この本は2020年2月に執筆を開始し、現在のバージョンは150ページを超えています。

この研究の著者4人、マイケル・M・ブロンスタイン、ジョアン・ブルーナ、タコ・コーエン、ペタル・ヴェリコビッチは、インペリアル・カレッジ・ロンドン、ニューヨーク大学、ディープマインドなどの研究機関に所属している。

リンク:
翻訳:

arXiv論文:
https://arxiv.org/abs/2104.13478

この本では、研究者は対称性、不変性、群論の観点から「一般的に使用されるすべてのニューラル アーキテクチャを構築するために必要な知識」を抽出しようとします。 CNN、GNN、Transformer、LSTM などの一般的に使用されるモデルに加えて、球状畳み込みニューラル ネットワーク (球状 CNN)、SO(3)-Transformer、ゲージ等変メッシュ CNN などの新しいモデルもカバーしています。

この本には、導入、高レベル空間での学習、幾何学的事前知識、幾何学的領域、幾何学的深層学習モデル、既存の問題とアプリケーション、歴史的展望の 7 つの章が含まれています。以下は書籍カタログです。

前提条件

「これまで群論に触れたことがない人にとって、私たちが構築する概念のいくつかは少々非現実的に思えるだろう」と、ディープマインドの上級研究科学者で本書の著者の一人、ペタル・ヴェリコビッチ氏は言う。

そのため、前置きとして著者同士の動画共有コンテンツをいくつか視聴すると、言葉では正確に表現できないコンテンツもより「鮮明」になるかもしれません。

ケンブリッジ大学でのペタル・ヴェリコビッチ氏の講演 - グラフニューラルネットワークの理論的基礎:
https://www.youtube.com/watch?v=uF53xsT7mjc

ICLR 2021におけるマイケル・ブロンスタインの基調講演:
https://iclr-conf.medium.com/announcement-the-iclr-2021-invited-speakers-db4aba84038a お知らせ

さらに、この本には次の概念が含まれています。

ドメイン: データを定義するすべての「ポイント」の集合。たとえば、画像の場合、ドメインはすべてのピクセルの集合です。グラフの場合、ドメインはすべてのノードとエッジの集合です。集合は無限または連続である可能性があることに注意してください。ただし、有限であると想像すると、計算が簡単になる場合があります。

対称群: 集合 Ω からそれ自身への全単射の集合 (g: Ω → Ω)。たとえば、画像内の各ピクセルを 1 スロット右にシフトしても、画像内のオブジェクトは変更されません。

対称変換を実行するときにオブジェクトが変更されないようにする必要があるため、次のプロパティが導入されます。

対称操作は構成可能である必要があります。たとえば、球を x 軸を中心に 30 度回転させ、次に y 軸を中心に 60 度回転させ、各回転で球上のオブジェクトが変更されないと仮定すると、複数の変換を連続して使用しても球上のオブジェクトは変更されません。つまり、x 軸を中心に 30 度回転させ、次に y 軸を中心に 60 度回転させることも対称操作になります。一般に、g と h が対称操作である場合、goh も対称操作になります。

対称操作は可逆的でなければなりません。つまり、基になるオブジェクトを変更していない場合は、元の状態に戻れる必要があります (そうでない場合は、情報が失われることになります)。したがって、球体を時計回りに 30 度回転させた場合、反時計回りに 30 度回転させることによって元のアクションを「元に戻す」ことができます。 g が対称である場合、g^-1 が存在する必要があります (また対称でなければなりません)。これにより、gog^-1 = id (同一性) になります。

ドメイン保存アイデンティティ関数 (id) も対称である必要があります。

これらの特性をすべて足し合わせると、すべての対称集合と結合演算子 (o) がグループを形成し、それが本書で広く使用されている数学的構造であることがわかります。

対称性の重要性は、機械学習コミュニティ、特にパターン認識とコンピューター ビジョン アプリケーションにおいて長い間認識されてきました。等価特徴検出に関する初期の研究は、前世紀の天利俊一とライナー レンツの研究にまで遡ることができます。ニューラル ネットワークの分野では、マービン ミンスキー氏とシーモア パパート氏によって提唱されたパーセプトロンの群不変性定理が、(単層) パーセプトロンが不変性を学習する能力の基本的な定義を提供します。これがその後の多層アーキテクチャの研究の出発点となり、最終的にはディープラーニングへとつながりました。

<<:  蔡子星院士:オープンソースは人工知能開発の新たなトレンド

>>:  ロボットがお手伝いします。楽しいメーデーを楽しみましょう!

ブログ    
ブログ    
ブログ    

推薦する

法律分野で初の「1対多」の人間と機械の競争が始まり、AI弁護士が契約書審査で人間を上回る

この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...

機械学習は「部屋の中の象」に対処するのが難しい

AI には、部屋に突然象が現れたなど、信じられないような異常を発見しながらも、それを冷静に受け入れる...

2019年の人工知能の給与水準、給与水準分析チャート、わかりやすい

2019年の人工知能の給与水準、まずは全体の給与水準の2つの分析グラフを見てみましょう! ***は、...

北京地下鉄は顔認識技術を使用して機密のセキュリティチェックを実施する予定

[[280913]] Jiwei.comニュース(文/Jimmy)によると、北京軌道交通指揮センター...

この病院のAI看護師は、人間の看護師の作業負荷を30%削減するためにオンライン化されました

[[270607]]看護師は医療現場を問わず需要が高いです。米国労働統計局の報告によると、看護師の求...

...

農家は収穫を祝い、秋分の日にドローンがその技を披露するのを見てください!

黄金の秋、収穫の季節です。また秋分の日を迎え、わが国では4回目の「農民収穫祭」を迎えます。畑や広場、...

...

EUはAI法に加えて、GPT-4などの高機能モデルにも追加の規則と制約を追加する予定である。

今週末の12月10日、欧州連合はChatGPTを含む一般的な人工知能システムを対象とする世界初のAI...

L4自動運転の脆弱性: 認識アルゴリズムは人工の3D悪意のある障害物を回避できない可能性がある

最近、ある調査により、レベル4自動運転で使用されるマルチセンサーフュージョンベースの認識技術にセキュ...

AIはイノベーションを通じて気候への影響を補うことができるでしょうか?

最も熱心な気候変動監視者でさえ希望を抱いている。なぜなら、人類の革新と技術が私たちをこの混乱に陥れた...

...

蘭州テクノロジーの周明氏:大きなモデルは必ずしも大きいほど良いというわけではありません。100億規模のモデルでも十分かもしれません。

この記事は、WOT2023カンファレンスでの蘭州科技の創設者兼CEOである周明氏の基調講演からまとめ...

グラフアルゴリズムシリーズ: 無向グラフのデータ構造

[[393944]]この記事はWeChatの公開アカウント「Beta Learns JAVA」から転...