AIは単細胞生物が脳なしで意図した方向に移動する仕組みを説明するのに役立つ

AIは単細胞生物が脳なしで意図した方向に移動する仕組みを説明するのに役立つ

単純な生物はどのようにして特定の場所へ移動できるのか?ウィーン大学で開発された人工知能と物理モデルが、この疑問を解明するのに役立つ可能性があるとメディアが報じた。脳や神経系がないのに、どうやって目的の方向に移動できるのでしょうか? 単細胞生物は、この偉業を何の問題もなく達成できるようです。たとえば、単細胞生物は「小さな鞭毛」の尾の助けを借りて、餌に向かって泳ぐことができます。

[[401139]]

これらの極めて単純な生物がどのようにしてこれを達成するのかは、これまで完全には明らかになっていませんでした。しかし、ウィーン大学の研究チームは、このプロセスをコンピューター上でシミュレートすることに成功しました。彼らは、生物とその環境の非常に単純なモデル間の物理的な相互作用を計算しました。この環境は、不均一に分布した食物源を含む化学的に不均質な流体です。

このシミュレートされた生物には、非常に単純な方法で環境内の食物情報を処理する能力が与えられました。機械学習アルゴリズムの助けを借りて、この仮想生物の情報処理は多くの進化の段階で修正され、最適化されました。その結果、食物を探す際に生物と非常によく似た動きをするコンピューター生物が誕生しました。

「一見すると、このような単純なモデルでこのような困難な課題を解決できるというのは驚きだ」と、ウィーン大学理論物理学研究所の「ソフトマター理論」グループ(ゲルハルト・カール率いる)で研究プロジェクトを率いたアンドラス・ツォットル氏は言う。 「細菌は受容体を使って、例えば酸素や栄養の濃度がどの方向に増加しているかを判断し、この情報に基づいて望ましい方向への移動を開始します。これは走化性として知られています。」

他の多細胞生物の行動は、神経細胞の相互接続によって説明できます。しかし、単細胞生物には神経細胞がありません。この場合、細胞内では極めて単純な処理ステップしか実行できません。これまで、化学センサーなどからの単純な感覚印象を標的の運動活動に結び付けるのに、これほど低いレベルの複雑さで十分であるかどうかは不明だった。

「これを説明するには、これらの単細胞生物の動きに関する現実的な物理モデルが必要です」とアンドラス・ゾットルは言う。 「私たちは、まず物理的に流体内で独立した動きを可能にする、可能な限り最も単純なモデルを選択しました。私たちの単細胞生物は、単純化された筋肉でつながれた 3 つの塊で構成されています。ここでの疑問は、これらの筋肉を調整して生物全体を望ましい方向に動かすことができるか、ということです。そして最も重要なのは、このプロセスは単純な方法で達成できるか、それとも複雑な制御が必要になるかということです。」

信号と指示の小さなネットワーク

「たとえ単細胞生物が神経細胞のネットワークを持っていなくても、その「感覚的印象」を動きに結び付ける論理的ステップは、ニューロンのネットワークに似た方法で数学的に記述できる」と、人工知能の専門知識を使ってコンピューター上にモデルを実装したベネディクト・ハートル氏は言う。単細胞生物では、細胞のさまざまな要素の間にも論理的なつながりが存在します。化学信号が引き起こされ、最終的には生物の何らかの動きにつながります。

「これらの要素とそれらが互いに影響し合う方法は、コンピューター上でシミュレートされ、遺伝的アルゴリズムを使用して適応されます。世代ごとに、仮想単細胞生物の移動戦略はわずかに変化します」と、修士論文の一環としてこのテーマに関する多くの計算を行ったマクシミリアン・ヒューブルは報告しています。目的の化学物質の場所にうまく移動できた単細胞生物は「繁殖」することができ、成功しなかった変異体は「死んだ」。このようにして、多くの世代を経て、生物の進化と非常によく似た制御ネットワークが出現し、仮想の単細胞生物が化学的知覚を非常に単純な方法と非常に基本的な回路で標的の動きに変換できるようになりました。

ランダムな「揺れ」 - しかし、特定の目的がある

「意識的に何かを感知し、それに向かって走る高度に発達した動物と考えるべきではありません」とアンドレアス・ツォットルは言う。「それはランダムな揺れの動きに近いものです。しかし平均すると、正しい方向を向いてしまいます。そしてこれはまさに自然界の単細胞生物で観察されるものです。」

権威ある雑誌 PNAS に最近発表されたコンピューター シミュレーションとアルゴリズムの概念は、一見比較的複雑な動作パターンを実現するには、制御ネットワークの複雑さを最小限にするだけで十分であることを証明しています。物理的条件が正しく考慮されれば、非常に単純な内部機械で、自然界で知られている動きをモデル内で正確に再現するのに十分です。

<<:  NTTとシスコがAR技術を活用して生産性を向上

>>:  MLP は視覚研究に潜在的な驚きをもたらすでしょうか?最近のMLP画像分類作業の概要と分析

ブログ    
ブログ    
ブログ    
ブログ    

推薦する

1 つの文で 10 万以上のコンテキストを持つ大規模モデルの真のパワーが発揮され、スコアが 27 から 98 に増加し、GPT-4 と Claude2.1 に適用可能

大きなモデルはすべてコンテキスト ウィンドウをロールアップしました。Llama -1 のときは、標準...

2022年の人工知能の7つの主要な応用トレンド

[[440141]]過去数年間で、人工知能はエンタープライズ アプリケーション市場で大きな進歩を遂げ...

機械学習の未来

[[401300]]データ ライフサイクルの管理は、自動運転車の開発において重要な部分です。自動運転...

快手が手の姿勢推定機能を発表、電光手の秘密を公式に公開

アイアンマンは指と手のひらを回すだけで、あっという間に鎧の製作を完了した。この魔法のような技に、スク...

複雑な課題に対するスマートなソリューション: 自動化の成功への道

マッキンゼーの「2022年世界産業用ロボット調査」によると、産業企業は世界的な労働力不足に対処するた...

機械学習で知っておくべき 8 つの次元削減手法、最後の手法は超ハードコアです!

次元削減とは、高次元のデータ セットを同等の低次元空間に変換するプロセスです。実際のデータ セットに...

Python 向け 5 つの強化学習フレームワーク

独自の強化学習実装をゼロから作成するのは大変な作業になる可能性がありますが、そうする必要はありません...

とんでもないことだ! UniVision: BEV 検出と Occ 共同統合フレームワーク、デュアルタスク SOTA!

この記事は、Heart of Autonomous Driving の公開アカウントから許可を得て転...

ICLRスポットライト!清華大学は時系列異常検出アルゴリズムを提案し、5つのSOTA結果を達成した。

現実世界のシステムは、動作中に大量の時系列データを生成します。これらの時系列データを通じてシステム内...

CV の世界における 3D ビジョンの究極の実現: コンピューターがこの 3 次元の世界を「見る」方法

携帯電話を開くと顔がロック解除されます。VR と AR 技術は、このような仮想でありながら現実のシー...

コーディングが ChatGPT を圧倒します! UIUCと清華大学が共同で7BパラメータのMagicorderをリリース、コードデータの重みは完全にオープンソース

オープンソースの「ビッグコードモデル」が登場しました。 UIUC 清華大学の研究者チームは、70 億...

1枚の写真を2分で3Dに変換します。テクスチャ品質とマルチビューの一貫性:新しいSOTA|北京大学が制作

写真を 3D に変換するのにかかる時間はわずか2 分です。さまざまな視点から見て、質感の品質と一貫性...

なぜ中国はアメリカや日本を抜いて人工知能で世界をリードしているのでしょうか?

[[279809]]北京は世界で最も人工知能企業が集中している都市であり、中国の人工知能分野は世界...

スマートホームが不動産市場の動向に与える影響

今日、多くの人がスマートホームが提供するものを活用したいと考えています。スマートホームは、快適で便利...

IEEE: AI の時代において、基本的なサイバー衛生で十分でしょうか?

長年にわたり、強力なパスワード、定期的なデータ バックアップ、多要素認証は、個人情報を安全に保つため...