今日の多言語翻訳モデルのほとんどは、英語中心のデータセットで統合モデルをトレーニングし、言語ラベルを追加することでモデルに翻訳する言語を指示します。このモデルは予測時に、英語以外の文章に別の英語以外の言語タグを直接追加して直接翻訳できるため、トレーニング中にソース言語とターゲット言語が見られなくてもモデル翻訳を実現できます。これはいわゆるゼロショット多言語翻訳です。 言語タグを追加する方法はたくさんあります。Volcano 翻訳チームの研究者は、実験研究を通じて、異なる言語タグは監督指示の効果にほとんど影響を与えないが、ゼロショット効果には非常に大きな影響を与えることを発見しました。この現象は複数のデータセットで検証されており、IWSLT17 では 14.02 BLEU、Euporal では 24.24 BLEU、TED トークでは 8.78 BLEU の差がありました。この研究はACL 2021の調査結果に採用されました。 論文アドレス: https://arxiv.org/abs/2106.07930 研究の背景と動機多言語翻訳では、言語タグを追加する方法が多数あり、一般的には、言語タグを追加する方法が異なってもモデルのパフォーマンスには影響がないと考えられています。しかし、言語タグが翻訳モデルに影響を与えるかどうかを体系的に研究した研究者はいません。この投稿では、言語タグを追加する一般的な 4 つの方法を比較します。 表1 4つの異なる言語タグ 表 1 に示すように、これら 4 つの方法では、ソース言語タグとターゲット言語タグが、ソース文の先頭またはターゲット文の先頭に異なる方法で追加されます。 表2 データセットの詳細 表2に示すように、この記事ではIWSLT17、Euporal、TEDトークの3つのデータセットを選択しています。これら3つのデータセットは、言語数とデータセットのサイズに比較的大きな違いがあります。この記事では、上記の 4 つの異なる言語ラベルに基づいて、これら 3 つのデータセットでまったく同じ構成の多言語翻訳モデルをトレーニングしました。 実験結果表3 実験結果 表 3 に示すように、次のことがわかります。 1. 言語タグやデータセットが異なっていても、教師あり学習ではモデルのパフォーマンスは基本的に同じです。 2. ゼロショット方向の場合: a. 異なる言語ラベルはモデルのパフォーマンスに大きな影響を与え、T-ENC は 3 つのデータセットで他の 3 つのラベルを一貫して上回りました。IWSLT17 では 14.02 BLEU、Euporal では 24.24 BLEU、TED トークでは 8.78 BLEU でした。 b. 言語ラベルが異なると、オフターゲット比率も異なります(オフターゲットとは、言語Xに翻訳すると、別の言語に翻訳される状況を指します)。基本的に、T-ENCのオフターゲット比率は他のものよりも小さく、これは基本的にゼロショットでのモデルのパフォーマンスと一致しています。 分析するでは、この現象の原因は何でしょうか?この記事では、この現象を 3 つの側面から説明しようと試み、TED データセットで実験を行います。 1. ターゲット言語が同じ場合、言語タグの追加方法は、エンコーダーを通過した後の異なる言語の文章の表現の一貫性に影響しますか? 2. T-ENC は他の方法よりもオフターゲット比率を低く抑えることができます。これは、予測中に言語ラベルに注意を払うアテンション メカニズムが優れているためでしょうか。 3. 翻訳モデルの各層で、異なる言語の同じ意味の文章はどの程度類似しているか? エンコーダ表現の一貫性上図はt-SNEを使ってエンコーダ出力の次元を削減し、kdeを使って描いた分布図です。ターゲット言語が同じ場合の異なる言語の文章の分布を示しています。T-ENCの異なる言語間のエンコーダ表現分布がより一貫していることがわかります。これは、T-ENC がモデルが言語に依存しないエンコーダー表現を学習するのに役立つことを示しています。 オフターゲットの問題を軽減する上の図は、ケーススタディを通じて、異なる言語ラベルの下でロシア語の文をイタリア語の文に翻訳するときに、モデルがイタリア語のラベルにどのように注意を払っているかを示しています。明らかに、T-ENC を使用する場合、モデルはイタリア語のラベルに最も注意を払っており、これが T-ENC のオフターゲット比率が最も小さい理由をある程度説明できます。 さまざまなレベルでの類似点上図のサブ図aは、英語とロシア語を除く18の言語からロシア語に翻訳した際に、異なる言語で同じ意味を持つ文章の表現の類似性を示しています。T-ENCの類似度曲線は常に他の言語ラベルより上にあることがわかります。これは、ターゲット言語が同じ場合、T-ENCの各層の表現が他の方法よりも一貫していることを示しています。 上図のサブ図bは、ロシア語から英語とロシア語以外の18の言語に翻訳されたときの、異なるターゲット言語での同じロシア語の文章の類似度を示しています。T-ENCの類似度曲線は、ほとんどの場合、他の言語のラベルの下にあることがわかります。これは、ターゲット言語が異なる場合、T-ENCがターゲット言語に関連する表現をより適切に生成できることを示しています。 要約するこの研究では、異なる言語ラベルが多言語ゼロショット翻訳に大きな影響を与えることを発見し、非常に異なるデータを持つ 3 つの異なるデータセットで実験を行いました。結果、異なる言語ラベルが多言語ゼロショット翻訳に大きな影響を与えることが検証され、T-ENC がゼロショットで他の言語ラベルよりも優れていることが示されました。同時に、この研究では、予測中にさまざまな言語タグがモデルの表現に与える影響を分析し、T-ENC はターゲット言語に関連しているがソース言語とは関連のない表現をより適切に取得できることを発見しました。 1. T-ENC は、エンコーダー後の異なるソース言語での文章の表現をより一貫したものにすることができます。 2. T-ENC の注意メカニズムは、ターゲット言語の言語タグにより適切に注意を払うことができます。 3. T-ENC のさまざまなレイヤーでの表現は、他の方法よりもターゲット言語との関連性が高くなります。 |
>>: Swin Transformerをベースに、清華大学などがMoBY自己教師学習法のコードを提案し、オープンソース化されている。
導入こんにちは!数時間前にディープラーニング プロジェクトを終えたので、その成果を共有したいと思いま...
Adobe Max 2021 イベントは予定通り開催されます!このイベントの最も興味深い特徴の 1 ...
人工知能(AI)については多くの報道や解説がなされてきました。奇跡を起こすことができると言う人もいれ...
今日はクラウド コンピューティング、ビッグ データ、人工知能についてお話します。これら 3 つの単語...
この記事はAI新メディアQuantum Bit(公開アカウントID:QbitAI)より許可を得て転載...
8月11日はHuawei Developer Conferenceの3日目であり、カンファレンスの議...
最近、シンガポール国立大学、バイトダンス、その他の機関が共同で開発した技術的成果が、トップクラスの神...
世界銀行の支援を受けて、国際非営利団体「Action Against Hunger」は人工知能を活用...
「万能トランスフォーマー」として知られるマンバは、発売から2か月も経たないうちに高性能ビジュアルバー...
[[360153]]あなたをモデルに、考え、反応し、行動するように訓練されたロボットを想像してみてく...
前年と比べると、春節期間中の電力供給の確保においてハイテク技術が重要な役割を果たした。ロボットによる...
2020年、ピーター・スコット・モーガン博士はインターネットで話題になりました。人気の検索タイトル...
携帯電話を使って顔をスキャンして支払いをするとき、会社の入退室管理を通過するとき、あるいは道路を運転...