企業で AI ストレージを導入する際に留意すべき 7 つのポイント

企業で AI ストレージを導入する際に留意すべき 7 つのポイント

企業における人工知能

新しい人工知能 (AI) と機械学習 (ML) のワークロードにより、エンタープライズ インフラストラクチャに新たな要求が生じています。ファイルベースのワークロードは、多くの AI 主導のイノベーションの中心です。その結果、ビデオ、画像、音声ファイルなどの非構造化データが急速に拡大しています。

[[412651]]

しかし、企業は消費者の嗜好の分析から新たなビジネス価値を生み出し、新たなレベルの自動化を使用して製品を開発することも模索しています。その結果、通話履歴やクレジットカード取引などの構造化データで構成されるデータセットも拡大しています。最適なストレージ インフラストラクチャは、統合ストレージ ソリューションで、これらの新しいファイルベースの AI ワークロードと、既存のブロックベースおよびファイルベースのエンタープライズ ワークロードを処理できる必要があります。

企業における人工知能導入のための 7 つのストレージ考慮事項

企業は、ストレージ ソリューションに多くのデータ管理機能を提供することを期待しています。エンタープライズ人工知能の出現により、次の 7 つの領域が特に重視されるようになりました。

  • 大規模でも一貫したパフォーマンスを実現する設計
  • パフォーマンス、容量、コストの目標を満たすために複数のストレージメディアの使用を最適化します
  • マルチプロトコルサポートによる統合ストレージ
  • 統合エンタープライズデータ保護
  • インフラストラクチャ管理を簡素化および自動化する強力な管理ツール
  • スマートインフラストラクチャ分析
  • 経験豊富なソリューションプロバイダー

統合ストレージの利点

複数のプロトコルの同時使用をサポートするストレージにより、ソリューションは幅広いワークロードを統合できるようになり、次のようなビジネス上のメリットが得られます。

  • AI/MLライフサイクル全体でデータを使用可能にするプロセス
  • SANとNASのストレージ環境を個別に取得、管理、維持する必要はありません。
  • 一貫したデータ保護を実現
  • 調達コスト、システム管理、管理オーバーヘッドを削減
  • データセンターの電力、冷却、ラックスペースのコストを最小限に抑える

DDNは、Tintriブランドのもと、ハイパフォーマンスコンピューティングと大規模AIインフラストラクチャの専門知識を企業に提供します。

Tintri の親会社である DataDirect Networks (DDN) は、大規模な AI および HPC 環境向けの大手ストレージ プロバイダーであり、実際には世界最大の非公開ストレージ企業です。 DDN は、データ集約型のワークロードと、あらゆる規模のストレージに対する需要を深く理解しています。現在、多くの企業がペタバイトのストレージしきい値をわずかに超えていますが、DDN のクライアントはエクサバイト レベルで導入しています。

過去数年間、企業がデータ集約型人工知能の潜在的な価値に関心を寄せるようになったため、DDN は大規模データに関する専門知識を企業向けにカスタマイズされた新しいソリューションに適用することにますます関心を寄せるようになりました。 DDN が Tintri、Nexenta、IntelliFlash 製品ライン (現在総称して Tintri ブランドとして知られている) を買収したことで、何千もの企業とそのより広範なエンタープライズ インフラストラクチャ エコシステムへの扉が開かれました。

また、今回の買収により、DDN はエンタープライズ ストレージにおける最先端の AI および ML テクノロジーの一部を獲得し、インテリジェント インフラストラクチャの機能が強化されます。より広範な DDN 戦略は、これらおよびその他の AI 関連機能と自律運用を DDN および Tintri 製品範囲全体に拡張することです。

  • AIワークロードを商業企業に導入する市場状況
  • エンタープライズ AI の具体的な使用例と、それがビジネスの成功にとってますます重要になっている理由
  • また、AI の導入を成功に導く落とし穴を回避しながら、組織が AI ワークロードから最大限の価値を引き出すのに役立つストレージ インフラストラクチャの種類についても説明します。

<<:  ARMの機能によりIBMの包括的なAI自動化ポートフォリオが強化される

>>:  ディープラーニングを使用して、写真用の強力な画像検索エンジンを構築します

ブログ    
ブログ    
ブログ    
ブログ    

推薦する

ChatGPT を成功させるための 26 のスーパーヒント

今日は、実際の戦闘でよく使われる26のヒントを紹介します。これにより、出力がより効果的になります。見...

機械学習を簡単にする 5 つのオープンソース Python ライブラリ

機械学習は興味深いものですが、実際に実行するのは難しく複雑です。ワークフローとパイプラインの組み立て...

AIはクラウドコンピューティング大手の次の競争の焦点となる

人工知能が今日の情報技術分野で最もホットな話題であることは疑いの余地がなく、情報産業を豊かにし、改善...

...

メールはAIの恩恵を受け、よりスマートになり、自動的にデータを促し、エラーを報告する

電子メールは日ごとに賢くなってきています。 Gmail では宛先不明の受信者を報告でき、Google...

周洪義:人工知能には多くのセキュリティ上の弱点がある

3月5日、中国人民政治協商会議全国委員会委員で、360グループ会長兼CEOの周鴻毅氏は、今年の「両会...

マイクロソフト、機械学習モデル向けの高性能推論エンジン ONNX をオープンソース化

Microsoft は、Linux、Windows、Mac プラットフォーム向けの ONNX 形式の...

...

AISpeechの趙恒毅氏:国内のスマート音声産業は幅広い発展の見通しがある

[51CTO.comからのオリジナル記事] 人工知能の急速な発展に伴い、音声インタラクションは人工知...

仮想現実プログラムを使用してテストされた人工視覚技術は、視覚障害者の自立を支援する

科学技術が発展するにつれ、人類への科学技術の貢献が徐々に明らかになってきています。現在、世界中の科学...

ケンブリッジ 2020 人工知能パノラマレポート、将来予測される 8 つの AI トレンド

ケンブリッジ大学の「AIパノラマレポート」2020年版がこのほど正式に発表された。ケンブリッジ大学の...

ディープラーニングはフロントエンド開発ツールになりました:UI設計図に基づいてコードを自動生成します

UI デザイナーとフロントエンド エンジニアの間にニューラル ネットワークが必要になる場合があります...

...