AIは信頼の危機にどう対処するか

AIは信頼の危機にどう対処するか

今後 10 年間で AI が改善する必要がある領域が 1 つあります。それは透明性です。しかし、人工知能は「信頼の危機」にどのように対処するのでしょうか?

[[414520]]

人工知能はブラックボックスのようなものです。アルゴリズムがどのように機能するかを知っているのは開発者だけですが、他のすべての人にとって、AI の仕組みは不明のままです。企業は、人工知能の動作と判断が完全かつ正確であるとユーザーに信頼してもらいたいと考えています。しかし、これらの操作がどこから来ているのか、つまり、その基礎となるデータとロジックが何であるかを理解しなければ、AI を信頼することは困難です。

AIが日常生活に入り込むにつれて、こうした透明性の欠如はますます容認されなくなっています。採用の決定から警察の活動まで、あらゆることを人工知能が決定する場合、正確性と公平性をどのように確保できるでしょうか?こうした傾向が続くと、AI は偏見、公平性、機械への信頼といった難しい問題を提起します。たとえば、Amazon が開発した AI 採用ツールは女性に対して偏見があることが判明しました。この調査結果は、この技術が予想されていたよりもはるかに客観性に欠けていることを示唆している。

経済協力開発機構(OECD)などの組織は、AIの透明性の向上を求め始めています。欧州連合が可決した画期的な一般データ保護規則 (GDPR) により、個人はアルゴリズムが自分のデータをどのように使用するかを理解できるようになりました。これらは正しい方向への一歩であり、AI がどこに向かっているのかを明確に示しています。しかし、AIを透明化しすぎるとリスクが伴います。

AIが影で繁栄している理由

AI がより透明になるにつれて、操作も容易になります。金庫のようなものだと考えてください。ロック機構の仕組みが明らかになれば、金庫を破るのはずっと簡単になります。

不透明な AI によって生じるあらゆる問題を考えると、AI の内部の仕組みが公開されたときにも同様の問題が発生することは容易に想像できます。悪意のある人物がアルゴリズムの仕組みを理解すると、AI で改ざんされたデータセットを入力したり、基礎となるロジックを微調整したりすることで、アルゴリズムを実装して目的の結果を達成できる可能性があります。教授が学生の課題を採点するアルゴリズムの採点コードを公開したと想像してください。学生はその後、採点システムを活用できるようになります。

知的財産権に関する問題も考慮する必要があります。ほとんどのアルゴリズムは企業によって開発されており、その仕組みはコカコーラのレシピのように企業秘密とみなされています。これはデリケートな問題であり、AI 開発者は監視を行うことができる専門の監視グループにソースコードを公開する必要があります。

最終的にどのような解決策が達成されるにせよ、一つ明らかなことは、完全に透明な AI は問題を引き起こす可能性があるということです。この技術が機能するためには、いくつかのことが未知でなければなりません。

将来のAIは慎重に進むだろう

将来の AI は透明性と機密性の間で慎重なバランスをとることになります。公共部門、民間部門、消費者部門の間で避けられない対立が起こった後、これがどのような形になるかはまだ分からない。しかし、まだいくつかの手がかりは見つかります。

AI の透明性を向上させることは、単に扉を開くだけではありません。アルゴリズムが実際に何を行っているかを理解するには、厳密な精査が必要です。 Explainable AI (XAI) は、説明可能な機械学習アルゴリズムを活用して、AI オペレーターとユーザーが AI システムがなぜその決定を下したかを理解できるようにします。多くの企業がすでに自社の機械学習ソリューションの説明可能性を宣伝しています。米国国防高等研究計画局(DARPA)は、技術の環境適応性に焦点を当てた複数の研究プロジェクトに投資してきました。この複数年にわたる投資は、同庁の「AI Next」キャンペーンの一環である。全体的な目標は、舞台裏で機械がどのように意思決定を行っているかを人々が心配することなく、自律的に動作できる AI を開発することです。

こうしたツールが普及するにつれて、ユーザーはデータの流れのあらゆる側面が説明可能であることを期待するようになります。彼らは、何が起こっているのかを正確に知ることを要求しないが、昨日までのブラックボックスアプローチにも満足しないだろう。

今後 10 年間で、AI は日常生活のあらゆる側面にますます統合され、あらゆる面で向上していきます。

しかし、最も大きな変化は私たち自身の態度に関係するでしょう。 AI がより多くのことを実行し、それをどのように実行したかを教えてくれるようになれば、私たちは制御を失うリスクなしに AI に喜んで新たな責任を与えるようになるでしょう。

<<:  無人運転は地方で大きな発展の可能性を秘めている

>>:  産業用ロボットのプログラミングにはどの言語が使用されますか?

ブログ    

推薦する

人工知能技術はスマートビルの未来をどのように変えるのでしょうか?

賢明なビル管理者は、AI がビルの自動化だけでなく、より適応性の高いものにするのにも役立つことを知っ...

ビジネスにおいて人工知能との共生関係を築くには?

現代では、意図的か否かに関わらず、私たちは皆、人工知能に触れたり、人工知能を使用したりしています。私...

DAYU200は自閉症の早期スクリーニング音声特徴フィルタリングおよび認識システムを運用しています

オープンソースの詳細については、以下をご覧ください。 51CTO オープンソース基本ソフトウェアコミ...

...

この記事では、ロボットが視覚を通じてターゲット追跡を実現する方法を説明します。

概要: 視覚追跡技術は、コンピュータービジョン(人工知能の一分野)の分野における重要なトピックであり...

CPU と比較して、GPU がディープラーニングに適しているのはなぜですか?

1. CPUとGPUの比較CPUは複数の機能を備えた優れたリーダーです。その利点は、強力なスケジュ...

人間の髪の毛のわずか200分の1の太さ!科学者たちは脳のように電気を生成できる「ナノワイヤーネットワーク」を構築した

今日の主流の人工知能技術は、ある意味では脳の構造にヒントを得たものです。しかし、コンピュータの計算能...

商用顔認識は一時停止できるのか?

顔認証を防ぐために、市民は営業所を訪れる際にヘルメットをかぶっている。「初の顔認証事件」で、裁判所は...

クアルコム:米国は自動運転技術の標準化で中国に遅れをとる可能性

[[272354]]画像: この Uber の自動運転車は、米国サンフランシスコでテスト中に信号待ち...

GPT-4 MATHの精度は84.3%まで上昇しました!香港中文大学や清華大学を含むトップ7大学が新たなCSV方式を提案

大規模言語モデル (LLM) は常識理解やコード生成などのタスクでは大きな進歩を遂げていますが、数学...

...

GPT-4はますます愚かになり、過去の返信をキャッシュしていることが明らかになりました。ジョークが800回言われても、新しい返信は聞きません。

一部のネットユーザーは、GPT-4 が「愚か」になったことを示す別の証拠を発見しました。彼はこう質問...

女王即位70周年にあたり、世界初となる超リアルなヒューマノイドロボットアーティストが肖像画を発表したが、「信憑性に欠ける」と批判された。

ビッグデータダイジェスト制作著者: カレブエリザベス2世女王の即位70周年を祝い、英国は早くも祝賀ム...

...

エッジAI: インテリジェンスをソースに近づける

人工知能の発展により、データをアルゴリズムに渡すのではなく、アルゴリズムがデータを処理するようになり...